Ramakrishnan Durairajan, Sathiya Kumaran Mani, P. Barford, R. Nowak, J. Sommers
{"title":"时间编织:机会的单向延迟测量通过NTP","authors":"Ramakrishnan Durairajan, Sathiya Kumaran Mani, P. Barford, R. Nowak, J. Sommers","doi":"10.1109/ITC30.2018.00036","DOIUrl":null,"url":null,"abstract":"One-way delay (OWD) between end hosts has important implications for Internet applications, protocols, and measurement-based analyses. We describe a new approach for identifying OWDs via passive measurement of Network Time Protocol (NTP) traffic. NTP traffic offers the opportunity to measure OWDs accurately and continuously from hosts throughout the Internet. Based on detailed examination of NTP implementations and in-situ behavior, we develop an analysis tool that we call TimeWeaver, which enables assessment of precision and accuracy of OWD measurements from NTP. We apply TimeWeaver to a ~1TB corpus of NTP traffic collected from 19 servers located in the US and report on the characteristics of hosts and their associated OWDs, which we classify in a precision/accuracy hierarchy. To demonstrate the utility of these measurements, we apply iterative hard-threshold singular value decomposition to estimate the missing OWDs between arbitrary hosts from the highest tier in the hierarchy. We show that this approach results in highly accurate estimates of missing OWDs, with average error rates on the order of less than 2%.","PeriodicalId":159861,"journal":{"name":"2018 30th International Teletraffic Congress (ITC 30)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"TimeWeaver: Opportunistic One Way Delay Measurement Via NTP\",\"authors\":\"Ramakrishnan Durairajan, Sathiya Kumaran Mani, P. Barford, R. Nowak, J. Sommers\",\"doi\":\"10.1109/ITC30.2018.00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One-way delay (OWD) between end hosts has important implications for Internet applications, protocols, and measurement-based analyses. We describe a new approach for identifying OWDs via passive measurement of Network Time Protocol (NTP) traffic. NTP traffic offers the opportunity to measure OWDs accurately and continuously from hosts throughout the Internet. Based on detailed examination of NTP implementations and in-situ behavior, we develop an analysis tool that we call TimeWeaver, which enables assessment of precision and accuracy of OWD measurements from NTP. We apply TimeWeaver to a ~1TB corpus of NTP traffic collected from 19 servers located in the US and report on the characteristics of hosts and their associated OWDs, which we classify in a precision/accuracy hierarchy. To demonstrate the utility of these measurements, we apply iterative hard-threshold singular value decomposition to estimate the missing OWDs between arbitrary hosts from the highest tier in the hierarchy. We show that this approach results in highly accurate estimates of missing OWDs, with average error rates on the order of less than 2%.\",\"PeriodicalId\":159861,\"journal\":{\"name\":\"2018 30th International Teletraffic Congress (ITC 30)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 30th International Teletraffic Congress (ITC 30)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC30.2018.00036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Teletraffic Congress (ITC 30)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC30.2018.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TimeWeaver: Opportunistic One Way Delay Measurement Via NTP
One-way delay (OWD) between end hosts has important implications for Internet applications, protocols, and measurement-based analyses. We describe a new approach for identifying OWDs via passive measurement of Network Time Protocol (NTP) traffic. NTP traffic offers the opportunity to measure OWDs accurately and continuously from hosts throughout the Internet. Based on detailed examination of NTP implementations and in-situ behavior, we develop an analysis tool that we call TimeWeaver, which enables assessment of precision and accuracy of OWD measurements from NTP. We apply TimeWeaver to a ~1TB corpus of NTP traffic collected from 19 servers located in the US and report on the characteristics of hosts and their associated OWDs, which we classify in a precision/accuracy hierarchy. To demonstrate the utility of these measurements, we apply iterative hard-threshold singular value decomposition to estimate the missing OWDs between arbitrary hosts from the highest tier in the hierarchy. We show that this approach results in highly accurate estimates of missing OWDs, with average error rates on the order of less than 2%.