Komlós猜想匹配Banaszczyk界的算法

N. Bansal, D. Dadush, S. Garg
{"title":"Komlós猜想匹配Banaszczyk界的算法","authors":"N. Bansal, D. Dadush, S. Garg","doi":"10.1109/FOCS.2016.89","DOIUrl":null,"url":null,"abstract":"We consider the problem of finding a low discrepancy coloring for sparse set systems where each element lies in at most t sets. We give an efficient algorithm that finds a coloring with discrepancy O((t log n)1/2), matching the best known non-constructive bound for the problem due to Banaszczyk. The previous algorithms only achieved an O(t1/2 log n) bound. Our result also extends to the more general Komlós setting and gives an algorithmic O(log1/2 n) bound.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"An Algorithm for Komlós Conjecture Matching Banaszczyk's Bound\",\"authors\":\"N. Bansal, D. Dadush, S. Garg\",\"doi\":\"10.1109/FOCS.2016.89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of finding a low discrepancy coloring for sparse set systems where each element lies in at most t sets. We give an efficient algorithm that finds a coloring with discrepancy O((t log n)1/2), matching the best known non-constructive bound for the problem due to Banaszczyk. The previous algorithms only achieved an O(t1/2 log n) bound. Our result also extends to the more general Komlós setting and gives an algorithmic O(log1/2 n) bound.\",\"PeriodicalId\":414001,\"journal\":{\"name\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2016.89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

我们考虑对于每个元素最多存在于t个集合的稀疏集系统寻找低差异着色问题。我们给出了一个有效的算法,它找到了一个差异为O((t log n)1/2)的着色,匹配了Banaszczyk问题的最著名的非构造界。之前的算法只能达到O(t1/2 log n)的界。我们的结果也扩展到更一般的Komlós设置,并给出了一个O(log1/2 n)的算法界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Algorithm for Komlós Conjecture Matching Banaszczyk's Bound
We consider the problem of finding a low discrepancy coloring for sparse set systems where each element lies in at most t sets. We give an efficient algorithm that finds a coloring with discrepancy O((t log n)1/2), matching the best known non-constructive bound for the problem due to Banaszczyk. The previous algorithms only achieved an O(t1/2 log n) bound. Our result also extends to the more general Komlós setting and gives an algorithmic O(log1/2 n) bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信