增量预见局部压缩

MICRO 22 Pub Date : 1989-08-01 DOI:10.1145/75362.75415
Pantung Wijaya, V. Allan
{"title":"增量预见局部压缩","authors":"Pantung Wijaya, V. Allan","doi":"10.1145/75362.75415","DOIUrl":null,"url":null,"abstract":"Under timing constraints, local compaction may fail because of poor scheduling decisions. Su [SDWX87] uses foresight to avoid some of the poor scheduling decisions. However, the foresight takes a considerable amount of time. In this paper the Incremental Foresight algorithm is introduced. Experiments using four different target architectures show that the Incremental Foresight algorithm works as well as foresight, and saves around 48 percent of the excess time.","PeriodicalId":365456,"journal":{"name":"MICRO 22","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Incremental foresighted local compaction\",\"authors\":\"Pantung Wijaya, V. Allan\",\"doi\":\"10.1145/75362.75415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under timing constraints, local compaction may fail because of poor scheduling decisions. Su [SDWX87] uses foresight to avoid some of the poor scheduling decisions. However, the foresight takes a considerable amount of time. In this paper the Incremental Foresight algorithm is introduced. Experiments using four different target architectures show that the Incremental Foresight algorithm works as well as foresight, and saves around 48 percent of the excess time.\",\"PeriodicalId\":365456,\"journal\":{\"name\":\"MICRO 22\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MICRO 22\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/75362.75415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MICRO 22","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/75362.75415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在时间约束下,由于调度决策不佳,局部压缩可能会失败。Su [SDWX87]使用预见性来避免一些糟糕的调度决策。然而,这种预见需要相当多的时间。本文介绍了增量预见算法。使用四种不同目标架构的实验表明,增量预测算法的预测效果良好,并节省了大约48%的多余时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental foresighted local compaction
Under timing constraints, local compaction may fail because of poor scheduling decisions. Su [SDWX87] uses foresight to avoid some of the poor scheduling decisions. However, the foresight takes a considerable amount of time. In this paper the Incremental Foresight algorithm is introduced. Experiments using four different target architectures show that the Incremental Foresight algorithm works as well as foresight, and saves around 48 percent of the excess time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信