由n赋范空间上的Musielak-Orlicz函数定义的一些半整形差分序列空间

K. Raj, S. Sharma
{"title":"由n赋范空间上的Musielak-Orlicz函数定义的一些半整形差分序列空间","authors":"K. Raj, S. Sharma","doi":"10.7862/RF.2015.10","DOIUrl":null,"url":null,"abstract":"The concept of 2-normed spaces was initially developed by Gähler [6] in the mid of 1960’s, while that of n-normed spaces one can see in Misiak [17]. Since then, many others have studied this concept and obtained various results, see Gunawan ([7], [8]) and Gunawan and Mashadi [9] and many others. Let n ∈ N and X be a linear space over the field K, where K is field of real or complex numbers of dimension d, where d ≥ n ≥ 2. A real valued function ||·, · · · , ·|| on X satisfying the following four conditions:","PeriodicalId":345762,"journal":{"name":"Journal of Mathematics and Applications","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Some seminormed difference sequence spaces defined by a Musielak-Orlicz function over n-normed spaces\",\"authors\":\"K. Raj, S. Sharma\",\"doi\":\"10.7862/RF.2015.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of 2-normed spaces was initially developed by Gähler [6] in the mid of 1960’s, while that of n-normed spaces one can see in Misiak [17]. Since then, many others have studied this concept and obtained various results, see Gunawan ([7], [8]) and Gunawan and Mashadi [9] and many others. Let n ∈ N and X be a linear space over the field K, where K is field of real or complex numbers of dimension d, where d ≥ n ≥ 2. A real valued function ||·, · · · , ·|| on X satisfying the following four conditions:\",\"PeriodicalId\":345762,\"journal\":{\"name\":\"Journal of Mathematics and Applications\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7862/RF.2015.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7862/RF.2015.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

二范空间的概念最初是由Gähler[6]在20世纪60年代中期提出的,而n范空间的概念可以在Misiak[17]中看到。此后,许多人对这一概念进行了研究,并获得了各种结果,如Gunawan([7],[8])和Gunawan and Mashadi[9]等。设n∈n, X为域K上的线性空间,其中K为维数为d的实数或复数域,且d≥n≥2。X上的实值函数||·,···,·||满足以下四个条件:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some seminormed difference sequence spaces defined by a Musielak-Orlicz function over n-normed spaces
The concept of 2-normed spaces was initially developed by Gähler [6] in the mid of 1960’s, while that of n-normed spaces one can see in Misiak [17]. Since then, many others have studied this concept and obtained various results, see Gunawan ([7], [8]) and Gunawan and Mashadi [9] and many others. Let n ∈ N and X be a linear space over the field K, where K is field of real or complex numbers of dimension d, where d ≥ n ≥ 2. A real valued function ||·, · · · , ·|| on X satisfying the following four conditions:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信