Kahler流形中的Schwarzian导数

S. Gong, Qihuang Yu
{"title":"Kahler流形中的Schwarzian导数","authors":"S. Gong, Qihuang Yu","doi":"10.1360/YA1995-38-9-1033","DOIUrl":null,"url":null,"abstract":"Let f be a holomorphic immersion which maps a Kahler manifold into a Kahler manifold of the same dimension. A Schwarzian derivative Sf of f is proposed. It is proved that: i) if Sf=0 and Sg=0, then Sf·g=0; ii) if the real part of the Schwarzian derivative of f on a convex domain in the Kaler manifold is bounded above, then F is an embedding. The upper bound is related to the holomorphic sectional curvature of the domain. This second theorem is an extension of Neharis criterion of univalence.","PeriodicalId":256661,"journal":{"name":"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Schwarzian derivative in Kahler manifolds\",\"authors\":\"S. Gong, Qihuang Yu\",\"doi\":\"10.1360/YA1995-38-9-1033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let f be a holomorphic immersion which maps a Kahler manifold into a Kahler manifold of the same dimension. A Schwarzian derivative Sf of f is proposed. It is proved that: i) if Sf=0 and Sg=0, then Sf·g=0; ii) if the real part of the Schwarzian derivative of f on a convex domain in the Kaler manifold is bounded above, then F is an embedding. The upper bound is related to the holomorphic sectional curvature of the domain. This second theorem is an extension of Neharis criterion of univalence.\",\"PeriodicalId\":256661,\"journal\":{\"name\":\"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1360/YA1995-38-9-1033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1360/YA1995-38-9-1033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设f是一个全纯浸没它将Kahler流形映射到相同维数的Kahler流形。提出了f的Schwarzian导数Sf。证明:i)若Sf=0, Sg=0,则Sf·g=0;ii)如果在Kaler流形的凸域上f的Schwarzian导数的实部在上面有界,则f是一个嵌入。上界与该区域的全纯截面曲率有关。第二个定理是Neharis同一性判据的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Schwarzian derivative in Kahler manifolds
Let f be a holomorphic immersion which maps a Kahler manifold into a Kahler manifold of the same dimension. A Schwarzian derivative Sf of f is proposed. It is proved that: i) if Sf=0 and Sg=0, then Sf·g=0; ii) if the real part of the Schwarzian derivative of f on a convex domain in the Kaler manifold is bounded above, then F is an embedding. The upper bound is related to the holomorphic sectional curvature of the domain. This second theorem is an extension of Neharis criterion of univalence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信