基于体载惯性传感器的精英半管滑雪板性能变量特征提取

Jason Harding, Jason Harding, James William Small, Daniel Arthur James, Daniel Arthur James
{"title":"基于体载惯性传感器的精英半管滑雪板性能变量特征提取","authors":"Jason Harding, Jason Harding, James William Small, Daniel Arthur James, Daniel Arthur James","doi":"10.1117/12.759259","DOIUrl":null,"url":null,"abstract":"Recent analysis of elite-level half-pipe snowboard competition has revealed a number of sport specific key performance variables (KPV's) that correlate well to score. Information on these variables is difficult to acquire and analyse, relying on collection and labour intensive manual post processing of video data. This paper presents the use of inertial sensors as a user-friendly alternative and subsequently implements signal processing routines to ultimately provide automated, sport specific feedback to coaches and athletes. The author has recently shown that the key performance variables (KPV's) of total air-time (TAT) and average degree of rotation (ADR) achieved during elite half-pipe snowboarding competition show strong correlation with an athlete's subjectively judged score. Utilising Micro-Electrochemical System (MEMS) sensors (tri-axial accelerometers) this paper demonstrates that air-time (AT) achieved during half-pipe snowboarding can be detected and calculated accurately using basic signal processing techniques. Characterisation of the variations in aerial acrobatic manoeuvres and the associated calculation of exact degree of rotation (DR) achieved is a likely extension of this research. The technique developed used a two-pass method to detect locations of half-pipe snowboard runs using power density in the frequency domain and subsequently utilises a threshold based search algorithm in the time domain to calculate air-times associated with individual aerial acrobatic manoeuvres. This technique correctly identified the air-times of 100 percent of aerial acrobatic manoeuvres within each half-pipe snowboarding run (n = 92 aerial acrobatic manoeuvres from 4 subjects) and displayed a very strong correlation with a video based reference standard for air-time calculation (r = 0.78 ± 0.08; p value < 0.0001; SEE = 0.08 ×/÷ 1.16; mean bias = -0.03 ± 0.02s) (value ± or ×/÷ 95% CL).","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Feature extraction of performance variables in elite half-pipe snowboarding using body mounted inertial sensors\",\"authors\":\"Jason Harding, Jason Harding, James William Small, Daniel Arthur James, Daniel Arthur James\",\"doi\":\"10.1117/12.759259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent analysis of elite-level half-pipe snowboard competition has revealed a number of sport specific key performance variables (KPV's) that correlate well to score. Information on these variables is difficult to acquire and analyse, relying on collection and labour intensive manual post processing of video data. This paper presents the use of inertial sensors as a user-friendly alternative and subsequently implements signal processing routines to ultimately provide automated, sport specific feedback to coaches and athletes. The author has recently shown that the key performance variables (KPV's) of total air-time (TAT) and average degree of rotation (ADR) achieved during elite half-pipe snowboarding competition show strong correlation with an athlete's subjectively judged score. Utilising Micro-Electrochemical System (MEMS) sensors (tri-axial accelerometers) this paper demonstrates that air-time (AT) achieved during half-pipe snowboarding can be detected and calculated accurately using basic signal processing techniques. Characterisation of the variations in aerial acrobatic manoeuvres and the associated calculation of exact degree of rotation (DR) achieved is a likely extension of this research. The technique developed used a two-pass method to detect locations of half-pipe snowboard runs using power density in the frequency domain and subsequently utilises a threshold based search algorithm in the time domain to calculate air-times associated with individual aerial acrobatic manoeuvres. This technique correctly identified the air-times of 100 percent of aerial acrobatic manoeuvres within each half-pipe snowboarding run (n = 92 aerial acrobatic manoeuvres from 4 subjects) and displayed a very strong correlation with a video based reference standard for air-time calculation (r = 0.78 ± 0.08; p value < 0.0001; SEE = 0.08 ×/÷ 1.16; mean bias = -0.03 ± 0.02s) (value ± or ×/÷ 95% CL).\",\"PeriodicalId\":320411,\"journal\":{\"name\":\"SPIE Micro + Nano Materials, Devices, and Applications\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Micro + Nano Materials, Devices, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.759259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Micro + Nano Materials, Devices, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.759259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

最近对精英水平的半管式单板滑雪比赛的分析揭示了一些与得分密切相关的特定运动关键表现变量(KPV)。关于这些变量的信息很难获取和分析,依赖于视频数据的收集和劳动密集型的人工后处理。本文介绍了惯性传感器作为一种用户友好的替代方案的使用,并随后实现了信号处理例程,最终为教练和运动员提供自动化的运动特定反馈。作者最近的研究表明,在精英半管滑雪比赛中,总腾空时间(TAT)和平均旋转度(ADR)的关键表现变量(KPV)与运动员的主观判断分数有很强的相关性。利用微电化学系统(MEMS)传感器(三轴加速度计),本文证明了使用基本的信号处理技术可以准确地检测和计算半管滑雪过程中获得的空气时间(AT)。空中杂技动作的变化特征和精确旋转度(DR)的相关计算可能是本研究的延伸。该技术采用了一种双通道方法,在频域使用功率密度检测半管滑雪板的位置,随后在时域使用基于阈值的搜索算法来计算与个人空中杂技动作相关的空中时间。该技术正确地识别了每次半管式单板滑雪中100%的空中杂技动作的空中时间(n =来自4名受试者的92个空中杂技动作),并与基于视频的空中时间计算参考标准显示出非常强的相关性(r = 0.78±0.08;P值< 0.0001;见= 0.08 ×/÷ 1.16;平均偏差= -0.03±0.02s)(值±或×/÷ 95% CL)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature extraction of performance variables in elite half-pipe snowboarding using body mounted inertial sensors
Recent analysis of elite-level half-pipe snowboard competition has revealed a number of sport specific key performance variables (KPV's) that correlate well to score. Information on these variables is difficult to acquire and analyse, relying on collection and labour intensive manual post processing of video data. This paper presents the use of inertial sensors as a user-friendly alternative and subsequently implements signal processing routines to ultimately provide automated, sport specific feedback to coaches and athletes. The author has recently shown that the key performance variables (KPV's) of total air-time (TAT) and average degree of rotation (ADR) achieved during elite half-pipe snowboarding competition show strong correlation with an athlete's subjectively judged score. Utilising Micro-Electrochemical System (MEMS) sensors (tri-axial accelerometers) this paper demonstrates that air-time (AT) achieved during half-pipe snowboarding can be detected and calculated accurately using basic signal processing techniques. Characterisation of the variations in aerial acrobatic manoeuvres and the associated calculation of exact degree of rotation (DR) achieved is a likely extension of this research. The technique developed used a two-pass method to detect locations of half-pipe snowboard runs using power density in the frequency domain and subsequently utilises a threshold based search algorithm in the time domain to calculate air-times associated with individual aerial acrobatic manoeuvres. This technique correctly identified the air-times of 100 percent of aerial acrobatic manoeuvres within each half-pipe snowboarding run (n = 92 aerial acrobatic manoeuvres from 4 subjects) and displayed a very strong correlation with a video based reference standard for air-time calculation (r = 0.78 ± 0.08; p value < 0.0001; SEE = 0.08 ×/÷ 1.16; mean bias = -0.03 ± 0.02s) (value ± or ×/÷ 95% CL).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信