利用主题信息顺序对游客评论进行分类的有效性研究

Shogo Nakamura, M. Okada, Kiyota Hashimoto
{"title":"利用主题信息顺序对游客评论进行分类的有效性研究","authors":"Shogo Nakamura, M. Okada, Kiyota Hashimoto","doi":"10.1109/CCATS.2015.32","DOIUrl":null,"url":null,"abstract":"The Sentiment analysis targeted customer reviews is an active research field in recent years. Customer reviews contain various topics that closely related to interest of reviewer and situation of utilization. Using this relation, it will be possible to show readers information that fits in interest of them. We collected customer reviews from a tourism information web site, estimate topics in the customer reviews by applying LDA and estimate that customer reviews was whether positive or negative.","PeriodicalId":433684,"journal":{"name":"2015 International Conference on Computer Application Technologies","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Investigation of Effectiveness Using Topic Information Order to Classify Tourists Reviews\",\"authors\":\"Shogo Nakamura, M. Okada, Kiyota Hashimoto\",\"doi\":\"10.1109/CCATS.2015.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Sentiment analysis targeted customer reviews is an active research field in recent years. Customer reviews contain various topics that closely related to interest of reviewer and situation of utilization. Using this relation, it will be possible to show readers information that fits in interest of them. We collected customer reviews from a tourism information web site, estimate topics in the customer reviews by applying LDA and estimate that customer reviews was whether positive or negative.\",\"PeriodicalId\":433684,\"journal\":{\"name\":\"2015 International Conference on Computer Application Technologies\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Computer Application Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCATS.2015.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Computer Application Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCATS.2015.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对顾客评论的情感分析是近年来一个活跃的研究领域。客户评论包含各种主题,这些主题与评论者的兴趣和使用情况密切相关。利用这种关系,就有可能向读者展示符合他们兴趣的信息。我们从一个旅游信息网站收集顾客评论,运用LDA估计顾客评论的主题,估计顾客评论是正面的还是负面的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Investigation of Effectiveness Using Topic Information Order to Classify Tourists Reviews
The Sentiment analysis targeted customer reviews is an active research field in recent years. Customer reviews contain various topics that closely related to interest of reviewer and situation of utilization. Using this relation, it will be possible to show readers information that fits in interest of them. We collected customer reviews from a tourism information web site, estimate topics in the customer reviews by applying LDA and estimate that customer reviews was whether positive or negative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信