求解有界直径最小生成树问题的遗传算法新组合算子

N. D. Nghia, Huynh Thi Thanh Binh
{"title":"求解有界直径最小生成树问题的遗传算法新组合算子","authors":"N. D. Nghia, Huynh Thi Thanh Binh","doi":"10.1109/RIVF.2007.369143","DOIUrl":null,"url":null,"abstract":"Given a connected, weighted, undirected graph G=(V, E) and a bound D, Bounded Diameter Minimum Spanning Tree problem (BDMST) seeks spanning tree on G with smallest weight in which no path between two vertices contains more than D edges. This problem is NP-hard for 4 les D les |V|i - 1. In present paper a new randomized greedy heuristic algorithm and a new recombination method in genetic algorithm for solving BDMST are developed. Results of computational experiments are reported to show the efficiency of these algorithms.","PeriodicalId":158887,"journal":{"name":"2007 IEEE International Conference on Research, Innovation and Vision for the Future","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"New Recombination Operator in Genetic Algorithm For Solving the Bounded Diameter Minimum Spanning Tree Problem\",\"authors\":\"N. D. Nghia, Huynh Thi Thanh Binh\",\"doi\":\"10.1109/RIVF.2007.369143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a connected, weighted, undirected graph G=(V, E) and a bound D, Bounded Diameter Minimum Spanning Tree problem (BDMST) seeks spanning tree on G with smallest weight in which no path between two vertices contains more than D edges. This problem is NP-hard for 4 les D les |V|i - 1. In present paper a new randomized greedy heuristic algorithm and a new recombination method in genetic algorithm for solving BDMST are developed. Results of computational experiments are reported to show the efficiency of these algorithms.\",\"PeriodicalId\":158887,\"journal\":{\"name\":\"2007 IEEE International Conference on Research, Innovation and Vision for the Future\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Research, Innovation and Vision for the Future\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF.2007.369143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Research, Innovation and Vision for the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF.2007.369143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

给定一个连通的、加权的无向图G=(V, E)和一个有界的图D,有界直径最小生成树问题(BDMST)在G上寻找一棵权值最小且两个顶点之间的路径不包含超过D条边的生成树。这个问题是np困难的,对于4个小的dles |V|i - 1。本文提出了求解BDMST的一种新的随机贪心启发式算法和一种新的遗传算法重组方法。计算实验结果表明了这些算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Recombination Operator in Genetic Algorithm For Solving the Bounded Diameter Minimum Spanning Tree Problem
Given a connected, weighted, undirected graph G=(V, E) and a bound D, Bounded Diameter Minimum Spanning Tree problem (BDMST) seeks spanning tree on G with smallest weight in which no path between two vertices contains more than D edges. This problem is NP-hard for 4 les D les |V|i - 1. In present paper a new randomized greedy heuristic algorithm and a new recombination method in genetic algorithm for solving BDMST are developed. Results of computational experiments are reported to show the efficiency of these algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信