研究进化算法中自适应参数控制的反馈机制

A. Aleti, I. Moser
{"title":"研究进化算法中自适应参数控制的反馈机制","authors":"A. Aleti, I. Moser","doi":"10.1109/CEC.2013.6557950","DOIUrl":null,"url":null,"abstract":"The performance of an Evolutionary Algorithm (EA) is greatly affected by the settings of its strategy parameters. An effective solution to the parameterisation problem is adaptive parameter control, which applies learning methods that use feedback from the optimisation process to evaluate the effect of parameter value choices and adjust the parameter values over the iterations. At every iteration of an EA, the performance of an EA is reported and employed by the feedback mechanism as an indication of the success of the parameterisation of the algorithm instance. Many approaches to collect information about the algorithm's performance exist in single objective optimisation. In this work, we review the most recent and prominent approaches. In multiobjective optimisation, establishing a single scalar which can report the algorithm's performance as feedback for adaptive parameter control is a complex task. Existing performance measures of multiobjective optimisation are generally used as feedback for the optimisation process. We discuss the properties of these measures and present an empirical evaluation of the binary hypervolume and ϵ+-indicators as feedback for adaptive parameter control.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Studying feedback mechanisms for adaptive parameter control in evolutionary algorithms\",\"authors\":\"A. Aleti, I. Moser\",\"doi\":\"10.1109/CEC.2013.6557950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of an Evolutionary Algorithm (EA) is greatly affected by the settings of its strategy parameters. An effective solution to the parameterisation problem is adaptive parameter control, which applies learning methods that use feedback from the optimisation process to evaluate the effect of parameter value choices and adjust the parameter values over the iterations. At every iteration of an EA, the performance of an EA is reported and employed by the feedback mechanism as an indication of the success of the parameterisation of the algorithm instance. Many approaches to collect information about the algorithm's performance exist in single objective optimisation. In this work, we review the most recent and prominent approaches. In multiobjective optimisation, establishing a single scalar which can report the algorithm's performance as feedback for adaptive parameter control is a complex task. Existing performance measures of multiobjective optimisation are generally used as feedback for the optimisation process. We discuss the properties of these measures and present an empirical evaluation of the binary hypervolume and ϵ+-indicators as feedback for adaptive parameter control.\",\"PeriodicalId\":211988,\"journal\":{\"name\":\"2013 IEEE Congress on Evolutionary Computation\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2013.6557950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

进化算法策略参数的设置对算法的性能有很大影响。参数化问题的有效解决方案是自适应参数控制,它采用学习方法,利用优化过程的反馈来评估参数值选择的效果,并在迭代过程中调整参数值。在EA的每次迭代中,反馈机制都会报告EA的性能,并将其作为算法实例参数化成功的指示。在单目标优化中存在许多收集算法性能信息的方法。在这项工作中,我们回顾了最新的和突出的方法。在多目标优化中,建立一个能反映算法性能的单一标量作为自适应参数控制的反馈是一项复杂的任务。现有的多目标优化性能度量通常用作优化过程的反馈。我们讨论了这些措施的性质,并提出了二元超体积和御柱+指标作为自适应参数控制反馈的经验评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Studying feedback mechanisms for adaptive parameter control in evolutionary algorithms
The performance of an Evolutionary Algorithm (EA) is greatly affected by the settings of its strategy parameters. An effective solution to the parameterisation problem is adaptive parameter control, which applies learning methods that use feedback from the optimisation process to evaluate the effect of parameter value choices and adjust the parameter values over the iterations. At every iteration of an EA, the performance of an EA is reported and employed by the feedback mechanism as an indication of the success of the parameterisation of the algorithm instance. Many approaches to collect information about the algorithm's performance exist in single objective optimisation. In this work, we review the most recent and prominent approaches. In multiobjective optimisation, establishing a single scalar which can report the algorithm's performance as feedback for adaptive parameter control is a complex task. Existing performance measures of multiobjective optimisation are generally used as feedback for the optimisation process. We discuss the properties of these measures and present an empirical evaluation of the binary hypervolume and ϵ+-indicators as feedback for adaptive parameter control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信