在线高维时间序列离群点检测中最大频繁模式离群因子的研究

Lin Feng, Le Wang, Bo Jin
{"title":"在线高维时间序列离群点检测中最大频繁模式离群因子的研究","authors":"Lin Feng, Le Wang, Bo Jin","doi":"10.4156/JCIT.VOL5.ISSUE10.9","DOIUrl":null,"url":null,"abstract":"Frequent pattern outlier factor is used to detect outliers with complete frequent itemsets. But it is difficult in real-world time-series data streams application because of its low efficiency. In this paper, we propose a novel maximal frequent pattern outlier factor (MFPOF) and an outlier detection algorithm (OODFP) for online high-dimensional time-series outlier detection. Firstly, the time-series data streams are processed with sliding window to discover maximal frequent itemsets. Then the frequent patterns are simplified to compute the MFPOF of time-series data streams. Experimental results show that our approach not only provides higher efficiency, but also equivalent accuracy.","PeriodicalId":360193,"journal":{"name":"J. Convergence Inf. Technol.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Research on Maximal Frequent Pattern Outlier Factor for Online High-Dimensional Time-Series Outlier Detection\",\"authors\":\"Lin Feng, Le Wang, Bo Jin\",\"doi\":\"10.4156/JCIT.VOL5.ISSUE10.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequent pattern outlier factor is used to detect outliers with complete frequent itemsets. But it is difficult in real-world time-series data streams application because of its low efficiency. In this paper, we propose a novel maximal frequent pattern outlier factor (MFPOF) and an outlier detection algorithm (OODFP) for online high-dimensional time-series outlier detection. Firstly, the time-series data streams are processed with sliding window to discover maximal frequent itemsets. Then the frequent patterns are simplified to compute the MFPOF of time-series data streams. Experimental results show that our approach not only provides higher efficiency, but also equivalent accuracy.\",\"PeriodicalId\":360193,\"journal\":{\"name\":\"J. Convergence Inf. Technol.\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Convergence Inf. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4156/JCIT.VOL5.ISSUE10.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Convergence Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JCIT.VOL5.ISSUE10.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

频繁模式异常因子用于检测具有完整频繁项集的异常值。但由于其效率较低,难以在实际时间序列数据流中应用。本文提出了一种新的最大频繁模式异常因子(MFPOF)和一种在线高维时间序列异常检测算法(OODFP)。首先,对时间序列数据流进行滑动窗口处理,发现最大频繁项集;然后对频繁模式进行简化,计算时间序列数据流的MFPOF。实验结果表明,该方法不仅具有较高的效率,而且具有相当的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Maximal Frequent Pattern Outlier Factor for Online High-Dimensional Time-Series Outlier Detection
Frequent pattern outlier factor is used to detect outliers with complete frequent itemsets. But it is difficult in real-world time-series data streams application because of its low efficiency. In this paper, we propose a novel maximal frequent pattern outlier factor (MFPOF) and an outlier detection algorithm (OODFP) for online high-dimensional time-series outlier detection. Firstly, the time-series data streams are processed with sliding window to discover maximal frequent itemsets. Then the frequent patterns are simplified to compute the MFPOF of time-series data streams. Experimental results show that our approach not only provides higher efficiency, but also equivalent accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信