事件触发无线传感器网络中多对一拓扑的最优弹性路由

D. P. Dallas
{"title":"事件触发无线传感器网络中多对一拓扑的最优弹性路由","authors":"D. P. Dallas","doi":"10.1145/2387191.2387211","DOIUrl":null,"url":null,"abstract":"Existing research initiatives for monitoring changes in the Earth's surface evince the great value of new opportunities for monitoring networks to be deployed in volatile regions prone to movement. Wireless sensor networks (WSNs) for monitoring such volatile regions need routing protocols that can tolerate unpredictable changes akin to that found in ad hoc networks, and, due to the stringent resource constraints of WSNs, routing protocols should also be light-weight and efficient. To satisfy these requirements, one of the most capable and widely assimilated protocols is the Ad hoc On-Demand Distance Vector (AODV) routing protocol, which offers low routing, processing, and memory overhead. The ad hoc and on-demand routing capabilities of AODV can efficiently maintain and reconnect unicast routes following incidents such as node demise and environmental changes that can obstruct, break, and fragment the routes. AODV, however, was not originally designed for WSNs in which numerous sensors typically send data to an associated base station or gateway node. It is this unique requirement in WSNs for efficient discovery of a many-to-one routing topology that is addressed in this work by proposing an incremental enhancement to AODV called Base Station Advertisements (BSA). The proposed hybrid protocol, AODV-BSA, offers efficient discovery of a near-optimal many-to-one routing topology by broadcasting a BSA at the network layer to discover near-optimal unicast routes from each sensor to its associated base station (BS). The many-to-one topology is then maintained via the ad hoc and on-demand capabilities of AODV, which provides robust maintenance by efficiently mending breaks and concatenating new extensions to routes in response to node demise and route fragmentation.","PeriodicalId":311005,"journal":{"name":"International Workshop on Performance Monitoring, Measurement, and Evaluation of Heterogeneous Wireless and Wired Networks","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal and resilient routing for many-to-one topologies in event triggered wireless sensor networks\",\"authors\":\"D. P. Dallas\",\"doi\":\"10.1145/2387191.2387211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing research initiatives for monitoring changes in the Earth's surface evince the great value of new opportunities for monitoring networks to be deployed in volatile regions prone to movement. Wireless sensor networks (WSNs) for monitoring such volatile regions need routing protocols that can tolerate unpredictable changes akin to that found in ad hoc networks, and, due to the stringent resource constraints of WSNs, routing protocols should also be light-weight and efficient. To satisfy these requirements, one of the most capable and widely assimilated protocols is the Ad hoc On-Demand Distance Vector (AODV) routing protocol, which offers low routing, processing, and memory overhead. The ad hoc and on-demand routing capabilities of AODV can efficiently maintain and reconnect unicast routes following incidents such as node demise and environmental changes that can obstruct, break, and fragment the routes. AODV, however, was not originally designed for WSNs in which numerous sensors typically send data to an associated base station or gateway node. It is this unique requirement in WSNs for efficient discovery of a many-to-one routing topology that is addressed in this work by proposing an incremental enhancement to AODV called Base Station Advertisements (BSA). The proposed hybrid protocol, AODV-BSA, offers efficient discovery of a near-optimal many-to-one routing topology by broadcasting a BSA at the network layer to discover near-optimal unicast routes from each sensor to its associated base station (BS). The many-to-one topology is then maintained via the ad hoc and on-demand capabilities of AODV, which provides robust maintenance by efficiently mending breaks and concatenating new extensions to routes in response to node demise and route fragmentation.\",\"PeriodicalId\":311005,\"journal\":{\"name\":\"International Workshop on Performance Monitoring, Measurement, and Evaluation of Heterogeneous Wireless and Wired Networks\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Performance Monitoring, Measurement, and Evaluation of Heterogeneous Wireless and Wired Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2387191.2387211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Performance Monitoring, Measurement, and Evaluation of Heterogeneous Wireless and Wired Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2387191.2387211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

监测地球表面变化的现有研究倡议表明,在易变动的动荡地区部署监测网的新机会具有巨大价值。用于监控这些易变区域的无线传感器网络(wsn)需要能够容忍类似于ad hoc网络中发现的不可预测变化的路由协议,并且,由于wsn的严格资源限制,路由协议也应该是轻量级和高效的。为了满足这些需求,功能最强大且被广泛吸收的协议之一是Ad hoc按需距离矢量(AODV)路由协议,它提供了较低的路由、处理和内存开销。AODV的自组织和按需路由功能可以有效地维护和重新连接单播路由,例如节点死亡和环境变化可能会阻碍、中断和分割路由。然而,AODV最初并不是为wsn设计的,在wsn中,许多传感器通常将数据发送到相关的基站或网关节点。这是wsn中有效发现多对一路由拓扑的独特需求,本文通过对AODV提出一种称为基站广告(BSA)的增量增强来解决这一问题。提出的混合协议AODV-BSA通过在网络层广播BSA来发现从每个传感器到其相关基站(BS)的近最优单播路由,从而提供了近最优多对一路由拓扑的有效发现。然后通过AODV的特设和按需功能来维护多对一拓扑,AODV通过有效地修复中断并将新的扩展连接到路由以响应节点死亡和路由碎片,从而提供强大的维护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal and resilient routing for many-to-one topologies in event triggered wireless sensor networks
Existing research initiatives for monitoring changes in the Earth's surface evince the great value of new opportunities for monitoring networks to be deployed in volatile regions prone to movement. Wireless sensor networks (WSNs) for monitoring such volatile regions need routing protocols that can tolerate unpredictable changes akin to that found in ad hoc networks, and, due to the stringent resource constraints of WSNs, routing protocols should also be light-weight and efficient. To satisfy these requirements, one of the most capable and widely assimilated protocols is the Ad hoc On-Demand Distance Vector (AODV) routing protocol, which offers low routing, processing, and memory overhead. The ad hoc and on-demand routing capabilities of AODV can efficiently maintain and reconnect unicast routes following incidents such as node demise and environmental changes that can obstruct, break, and fragment the routes. AODV, however, was not originally designed for WSNs in which numerous sensors typically send data to an associated base station or gateway node. It is this unique requirement in WSNs for efficient discovery of a many-to-one routing topology that is addressed in this work by proposing an incremental enhancement to AODV called Base Station Advertisements (BSA). The proposed hybrid protocol, AODV-BSA, offers efficient discovery of a near-optimal many-to-one routing topology by broadcasting a BSA at the network layer to discover near-optimal unicast routes from each sensor to its associated base station (BS). The many-to-one topology is then maintained via the ad hoc and on-demand capabilities of AODV, which provides robust maintenance by efficiently mending breaks and concatenating new extensions to routes in response to node demise and route fragmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信