不确定评级数据下基于bagging的推荐集成方法

Ke Ji, Y. Yuan, R. Sun, Kun Ma, Zhenxiang Chen, Jian Liu
{"title":"不确定评级数据下基于bagging的推荐集成方法","authors":"Ke Ji, Y. Yuan, R. Sun, Kun Ma, Zhenxiang Chen, Jian Liu","doi":"10.1109/SPAC46244.2018.8965431","DOIUrl":null,"url":null,"abstract":"Matrix factorization (MF) is one of the most-used techniques to build recommender systems. However, in practical use, the existence of noise in the training set brings some uncertainty, degrading the performance of MF approaches. In this paper, we propose a Bagging-based MF framework, an ensemble method of using multiple MF-based models to improve the stability and accuracy. Specifically, our framework first rebuilds new training sets by resampling on the original ratings, then takes advantage of the sets to train MF models and finally combines the predictions from the models in a ensemble way. The experiment results on real data show that our framework can achieve some performance improvement when having noise samples.","PeriodicalId":360369,"journal":{"name":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bagging-based ensemble method for recommendations under uncertain rating data\",\"authors\":\"Ke Ji, Y. Yuan, R. Sun, Kun Ma, Zhenxiang Chen, Jian Liu\",\"doi\":\"10.1109/SPAC46244.2018.8965431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix factorization (MF) is one of the most-used techniques to build recommender systems. However, in practical use, the existence of noise in the training set brings some uncertainty, degrading the performance of MF approaches. In this paper, we propose a Bagging-based MF framework, an ensemble method of using multiple MF-based models to improve the stability and accuracy. Specifically, our framework first rebuilds new training sets by resampling on the original ratings, then takes advantage of the sets to train MF models and finally combines the predictions from the models in a ensemble way. The experiment results on real data show that our framework can achieve some performance improvement when having noise samples.\",\"PeriodicalId\":360369,\"journal\":{\"name\":\"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC46244.2018.8965431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC46244.2018.8965431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

矩阵分解是构建推荐系统最常用的技术之一。然而,在实际应用中,训练集中噪声的存在带来了一定的不确定性,降低了MF方法的性能。在本文中,我们提出了一个基于bagging的MF框架,这是一种使用多个基于MF的模型来提高稳定性和准确性的集成方法。具体来说,我们的框架首先通过对原始评级进行重新采样来重建新的训练集,然后利用这些训练集来训练MF模型,最后以集成的方式将模型的预测结合起来。在实际数据上的实验结果表明,当存在噪声样本时,该框架的性能有一定的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bagging-based ensemble method for recommendations under uncertain rating data
Matrix factorization (MF) is one of the most-used techniques to build recommender systems. However, in practical use, the existence of noise in the training set brings some uncertainty, degrading the performance of MF approaches. In this paper, we propose a Bagging-based MF framework, an ensemble method of using multiple MF-based models to improve the stability and accuracy. Specifically, our framework first rebuilds new training sets by resampling on the original ratings, then takes advantage of the sets to train MF models and finally combines the predictions from the models in a ensemble way. The experiment results on real data show that our framework can achieve some performance improvement when having noise samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信