{"title":"表面压力分布成像帧率超过1khz使用多孔压敏涂料","authors":"Y. Sakamura, T. Suzuki, M. Matsumoto","doi":"10.1109/ICIASF.2003.1274888","DOIUrl":null,"url":null,"abstract":"The aim of the present work is to demonstrate the feasibility of a porous pressure-sensitive paint (PSP) for time-resolved surface pressure measurements in unsteady flows. The porous PSP was composed of bathophenanthroline ruthenium(II) complex, Ru(Ph/sub 2/-phen), and a silica-gel thin-layer chromatography (TLC) aluminum plate. The dynamic response of the porous PSP was characterized by applying it to rapid pressure changes generated by a shock wave and a pulse-jet. The porous PSP was then applied to the transient starting process of flow in a two-dimensional Laval nozzle with a fast-framing complementary metal oxide semiconductor (CMOS) camera. It has been shown that the present imaging system can well capture a rapid flow evolution on the order of kilohertz such as shock wave motion in the nozzle during its starting process.","PeriodicalId":166420,"journal":{"name":"20th International Congress on Instrumentation in Aerospace Simulation Facilities, 2003. ICIASF '03.","volume":"260 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Surface pressure distribution imaging at frame rates over 1 kHz using porous pressure-sensitive paint\",\"authors\":\"Y. Sakamura, T. Suzuki, M. Matsumoto\",\"doi\":\"10.1109/ICIASF.2003.1274888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the present work is to demonstrate the feasibility of a porous pressure-sensitive paint (PSP) for time-resolved surface pressure measurements in unsteady flows. The porous PSP was composed of bathophenanthroline ruthenium(II) complex, Ru(Ph/sub 2/-phen), and a silica-gel thin-layer chromatography (TLC) aluminum plate. The dynamic response of the porous PSP was characterized by applying it to rapid pressure changes generated by a shock wave and a pulse-jet. The porous PSP was then applied to the transient starting process of flow in a two-dimensional Laval nozzle with a fast-framing complementary metal oxide semiconductor (CMOS) camera. It has been shown that the present imaging system can well capture a rapid flow evolution on the order of kilohertz such as shock wave motion in the nozzle during its starting process.\",\"PeriodicalId\":166420,\"journal\":{\"name\":\"20th International Congress on Instrumentation in Aerospace Simulation Facilities, 2003. ICIASF '03.\",\"volume\":\"260 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"20th International Congress on Instrumentation in Aerospace Simulation Facilities, 2003. ICIASF '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIASF.2003.1274888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th International Congress on Instrumentation in Aerospace Simulation Facilities, 2003. ICIASF '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIASF.2003.1274888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surface pressure distribution imaging at frame rates over 1 kHz using porous pressure-sensitive paint
The aim of the present work is to demonstrate the feasibility of a porous pressure-sensitive paint (PSP) for time-resolved surface pressure measurements in unsteady flows. The porous PSP was composed of bathophenanthroline ruthenium(II) complex, Ru(Ph/sub 2/-phen), and a silica-gel thin-layer chromatography (TLC) aluminum plate. The dynamic response of the porous PSP was characterized by applying it to rapid pressure changes generated by a shock wave and a pulse-jet. The porous PSP was then applied to the transient starting process of flow in a two-dimensional Laval nozzle with a fast-framing complementary metal oxide semiconductor (CMOS) camera. It has been shown that the present imaging system can well capture a rapid flow evolution on the order of kilohertz such as shock wave motion in the nozzle during its starting process.