计算机辅助诊断(CAD)筛选乳房x光检查发现乳腺癌不手术活检

Hadj Ahmed Bouarara
{"title":"计算机辅助诊断(CAD)筛选乳房x光检查发现乳腺癌不手术活检","authors":"Hadj Ahmed Bouarara","doi":"10.4018/ijssci.2019100103","DOIUrl":null,"url":null,"abstract":"Breast cancer has become a major health problem in the world over the past 50 years and its incidence has increased in recent years. It accounts for 33% of all cancer cases, and 60% of new cases of breast cancer occur in women aged 50 to 74 years. In this work we have proposed a computer-assisted diagnostic (CAD) system that can predict whether a woman has cancer or not by analyzing her mammogram automatically without passing through a biopsy stage. The screening mammogram will be vectorized using the n-gram pixel representation. After the vectors obtained will be classified into one of the classes—with cancer or without cancer—using the social elephant algorithm. The experimentation using the digital database for screening mammography (DDSM) and validation measures—f-measure entropy recall, accuracy, specificity, RCT, ROC, AUC—show clearly the effectiveness and the superiority of our proposed bioinspired technique compared to others techniques existed in the literature such as naïve bayes, Knearest neighbours, and decision tree c4.5. The goal is to help radiologists with early detection to reduce the mortality rate among women with breast cancer.","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Computer-Assisted Diagnostic (CAD) of Screening Mammography to Detect Breast Cancer Without a Surgical Biopsy\",\"authors\":\"Hadj Ahmed Bouarara\",\"doi\":\"10.4018/ijssci.2019100103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer has become a major health problem in the world over the past 50 years and its incidence has increased in recent years. It accounts for 33% of all cancer cases, and 60% of new cases of breast cancer occur in women aged 50 to 74 years. In this work we have proposed a computer-assisted diagnostic (CAD) system that can predict whether a woman has cancer or not by analyzing her mammogram automatically without passing through a biopsy stage. The screening mammogram will be vectorized using the n-gram pixel representation. After the vectors obtained will be classified into one of the classes—with cancer or without cancer—using the social elephant algorithm. The experimentation using the digital database for screening mammography (DDSM) and validation measures—f-measure entropy recall, accuracy, specificity, RCT, ROC, AUC—show clearly the effectiveness and the superiority of our proposed bioinspired technique compared to others techniques existed in the literature such as naïve bayes, Knearest neighbours, and decision tree c4.5. The goal is to help radiologists with early detection to reduce the mortality rate among women with breast cancer.\",\"PeriodicalId\":432255,\"journal\":{\"name\":\"Int. J. Softw. Sci. Comput. Intell.\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Softw. Sci. Comput. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijssci.2019100103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijssci.2019100103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在过去50年中,乳腺癌已成为世界上一个主要的健康问题,近年来其发病率有所增加。它占所有癌症病例的33%,60%的乳腺癌新病例发生在50至74岁的妇女中。在这项工作中,我们提出了一种计算机辅助诊断(CAD)系统,该系统可以通过自动分析乳房x光片来预测女性是否患有癌症,而无需经过活检阶段。筛查乳房x光片将使用n图像素表示进行矢量化。之后,利用社会大象算法将得到的向量分类为一类——有癌症或没有癌症。使用乳腺筛查数字数据库(DDSM)和验证措施(f-measure熵查全率,准确性,特异性,RCT, ROC, auc)进行的实验清楚地表明,与文献中存在的其他技术(如naïve bayes, Knearest neighbors和决策树c4.5)相比,我们提出的生物启发技术的有效性和优越性。目的是帮助放射科医生进行早期检测,以降低乳腺癌妇女的死亡率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Computer-Assisted Diagnostic (CAD) of Screening Mammography to Detect Breast Cancer Without a Surgical Biopsy
Breast cancer has become a major health problem in the world over the past 50 years and its incidence has increased in recent years. It accounts for 33% of all cancer cases, and 60% of new cases of breast cancer occur in women aged 50 to 74 years. In this work we have proposed a computer-assisted diagnostic (CAD) system that can predict whether a woman has cancer or not by analyzing her mammogram automatically without passing through a biopsy stage. The screening mammogram will be vectorized using the n-gram pixel representation. After the vectors obtained will be classified into one of the classes—with cancer or without cancer—using the social elephant algorithm. The experimentation using the digital database for screening mammography (DDSM) and validation measures—f-measure entropy recall, accuracy, specificity, RCT, ROC, AUC—show clearly the effectiveness and the superiority of our proposed bioinspired technique compared to others techniques existed in the literature such as naïve bayes, Knearest neighbours, and decision tree c4.5. The goal is to help radiologists with early detection to reduce the mortality rate among women with breast cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信