{"title":"城市场景下基于IEEE 802.11P的车载自组织网络(VANETS)高效数据传输的跨层设计方法","authors":"M. Abdelgadir, R. Saeed, Abuagla Babiker","doi":"10.5121/IJANS.2018.8401","DOIUrl":null,"url":null,"abstract":"Intelligent Transportation Systems (ITS) have been one of the promising technology that has a great interest attention from many researchers over the world. Vehicular Ad-hoc Network (VANET) communications environment as a part of ITS opens the way for a wide range of applications such as safety applications, mobility and connectivity for both driver and passengers to exploit the transport systems in a smoothly, efficiently and safer way. Several challenging tasks facing adopting VANET functionality for ITS such as modelling of wireless transmission and routing issues. These research issues have become more critical due to the high mobility of vehicles nodes (transmitters and receivers) and unexpected network topology due to the high speed of nodes. In fact, modelling radio propagation channel in VANET environment which considers as one of a stringent communications environment is a challenging task. The selection of a suitable transmission model plays a key role in the routing decisions for VANET. Different propagation models allow calculating the Received Signal Strength (RSS) based on key environmental properties such as the distance between transmitter vehicle and a receiver vehicle, the gain and antenna height of transmitter and a receiver vehicles. Hence, it is useful to calculate RSS and SNR values for a specific propagation model and then these values can be used later for routing decision in order to find the best path with high SNR. This paper evaluates the performance of different transmission models (freespace, two-ray and log-normal) in terms of Receive Signal Strength (RSS). In addition, the performance of such wireless transmission models for vehicular communication in terms of PDR, throughput and delay is evaluated by applying the proposed cross layer routing approach based on IEEE 802.11p. By using MATLAB, the obtained results confirm the best packet delivery ratio for our proposed approach, where it indicates poor quality of DSSS PHY with high number vehicles. The minimum delay achieved when traffic density is decreased.","PeriodicalId":130187,"journal":{"name":"International Journal on AdHoc Networking Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Cross Layer Design Approach for Efficient Data Delivery Based on IEEE 802.11P in Vehicular Ad-Hoc Networks (VANETS) for City Scenarios\",\"authors\":\"M. Abdelgadir, R. Saeed, Abuagla Babiker\",\"doi\":\"10.5121/IJANS.2018.8401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent Transportation Systems (ITS) have been one of the promising technology that has a great interest attention from many researchers over the world. Vehicular Ad-hoc Network (VANET) communications environment as a part of ITS opens the way for a wide range of applications such as safety applications, mobility and connectivity for both driver and passengers to exploit the transport systems in a smoothly, efficiently and safer way. Several challenging tasks facing adopting VANET functionality for ITS such as modelling of wireless transmission and routing issues. These research issues have become more critical due to the high mobility of vehicles nodes (transmitters and receivers) and unexpected network topology due to the high speed of nodes. In fact, modelling radio propagation channel in VANET environment which considers as one of a stringent communications environment is a challenging task. The selection of a suitable transmission model plays a key role in the routing decisions for VANET. Different propagation models allow calculating the Received Signal Strength (RSS) based on key environmental properties such as the distance between transmitter vehicle and a receiver vehicle, the gain and antenna height of transmitter and a receiver vehicles. Hence, it is useful to calculate RSS and SNR values for a specific propagation model and then these values can be used later for routing decision in order to find the best path with high SNR. This paper evaluates the performance of different transmission models (freespace, two-ray and log-normal) in terms of Receive Signal Strength (RSS). In addition, the performance of such wireless transmission models for vehicular communication in terms of PDR, throughput and delay is evaluated by applying the proposed cross layer routing approach based on IEEE 802.11p. By using MATLAB, the obtained results confirm the best packet delivery ratio for our proposed approach, where it indicates poor quality of DSSS PHY with high number vehicles. The minimum delay achieved when traffic density is decreased.\",\"PeriodicalId\":130187,\"journal\":{\"name\":\"International Journal on AdHoc Networking Systems\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on AdHoc Networking Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJANS.2018.8401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on AdHoc Networking Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJANS.2018.8401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cross Layer Design Approach for Efficient Data Delivery Based on IEEE 802.11P in Vehicular Ad-Hoc Networks (VANETS) for City Scenarios
Intelligent Transportation Systems (ITS) have been one of the promising technology that has a great interest attention from many researchers over the world. Vehicular Ad-hoc Network (VANET) communications environment as a part of ITS opens the way for a wide range of applications such as safety applications, mobility and connectivity for both driver and passengers to exploit the transport systems in a smoothly, efficiently and safer way. Several challenging tasks facing adopting VANET functionality for ITS such as modelling of wireless transmission and routing issues. These research issues have become more critical due to the high mobility of vehicles nodes (transmitters and receivers) and unexpected network topology due to the high speed of nodes. In fact, modelling radio propagation channel in VANET environment which considers as one of a stringent communications environment is a challenging task. The selection of a suitable transmission model plays a key role in the routing decisions for VANET. Different propagation models allow calculating the Received Signal Strength (RSS) based on key environmental properties such as the distance between transmitter vehicle and a receiver vehicle, the gain and antenna height of transmitter and a receiver vehicles. Hence, it is useful to calculate RSS and SNR values for a specific propagation model and then these values can be used later for routing decision in order to find the best path with high SNR. This paper evaluates the performance of different transmission models (freespace, two-ray and log-normal) in terms of Receive Signal Strength (RSS). In addition, the performance of such wireless transmission models for vehicular communication in terms of PDR, throughput and delay is evaluated by applying the proposed cross layer routing approach based on IEEE 802.11p. By using MATLAB, the obtained results confirm the best packet delivery ratio for our proposed approach, where it indicates poor quality of DSSS PHY with high number vehicles. The minimum delay achieved when traffic density is decreased.