p上的二维绝热CA规则

Otaxon Khudayberganov, Rustam Gaybullaev, Shovkat Redjepov
{"title":"p上的二维绝热CA规则","authors":"Otaxon Khudayberganov, Rustam Gaybullaev, Shovkat Redjepov","doi":"10.1109/ICISCT55600.2022.10146848","DOIUrl":null,"url":null,"abstract":"The present paper is devoted to study of a new type of lattice that is called pentagonal lattice. It is defined the von Neumann neighborhood of a cell in this lattice. Then, we consider a linear Cellular Automata with von Neumann neighborhood over pentagonal lattice. We investigate this Cellular Automata with adiabatic boundary condition. For the considered Cellular Automata, it is determined the transition rule matrix over the field ℤp with adiabatic boundary condition.","PeriodicalId":332984,"journal":{"name":"2022 International Conference on Information Science and Communications Technologies (ICISCT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D Adiabatic CA Rules over ℤp\",\"authors\":\"Otaxon Khudayberganov, Rustam Gaybullaev, Shovkat Redjepov\",\"doi\":\"10.1109/ICISCT55600.2022.10146848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper is devoted to study of a new type of lattice that is called pentagonal lattice. It is defined the von Neumann neighborhood of a cell in this lattice. Then, we consider a linear Cellular Automata with von Neumann neighborhood over pentagonal lattice. We investigate this Cellular Automata with adiabatic boundary condition. For the considered Cellular Automata, it is determined the transition rule matrix over the field ℤp with adiabatic boundary condition.\",\"PeriodicalId\":332984,\"journal\":{\"name\":\"2022 International Conference on Information Science and Communications Technologies (ICISCT)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Information Science and Communications Technologies (ICISCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISCT55600.2022.10146848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Information Science and Communications Technologies (ICISCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCT55600.2022.10146848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种叫做五边形晶格的新型晶格。它被定义为晶格中细胞的冯·诺依曼邻域。然后,我们考虑了五边形晶格上具有冯·诺依曼邻域的线性元胞自动机。研究了具有绝热边界条件的元胞自动机。对于所考虑的元胞自动机,确定了具有绝热边界条件的域上的转移规则矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2D Adiabatic CA Rules over ℤp
The present paper is devoted to study of a new type of lattice that is called pentagonal lattice. It is defined the von Neumann neighborhood of a cell in this lattice. Then, we consider a linear Cellular Automata with von Neumann neighborhood over pentagonal lattice. We investigate this Cellular Automata with adiabatic boundary condition. For the considered Cellular Automata, it is determined the transition rule matrix over the field ℤp with adiabatic boundary condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信