三维芯片中非冯诺依曼累积加速器的合并网络

Anirudh Jain, S. Srikanth, E. Debenedictis, T. Krishna
{"title":"三维芯片中非冯诺依曼累积加速器的合并网络","authors":"Anirudh Jain, S. Srikanth, E. Debenedictis, T. Krishna","doi":"10.1109/ICRC.2018.8638619","DOIUrl":null,"url":null,"abstract":"Logic-memory integration helps mitigate the von Neumann bottleneck, and this has enabled a new class of architectures that helps accelerate graph analytics and operations on sparse data streams. These utilize merge networks as a key unit of computation. Such networks are highly parallel and their performance increases with tighter coupling between logic and memory when a bitonic algorithm is used. This paper presents energy-efficient on-chip network architectures for merging key-value pairs using both word-parallel and bit-serial paradigms. The proposed architectures are capable of merging two rows of high bandwidth memory (HBM)worth of data in a manner that is completely overlapped with the reading from and writing back to such a row. Furthermore, their energy consumption is about an order of magnitude lower when compared to a naive crossbar based design.","PeriodicalId":169413,"journal":{"name":"2018 IEEE International Conference on Rebooting Computing (ICRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Merge Network for a Non-Von Neumann Accumulate Accelerator in a 3D Chip\",\"authors\":\"Anirudh Jain, S. Srikanth, E. Debenedictis, T. Krishna\",\"doi\":\"10.1109/ICRC.2018.8638619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logic-memory integration helps mitigate the von Neumann bottleneck, and this has enabled a new class of architectures that helps accelerate graph analytics and operations on sparse data streams. These utilize merge networks as a key unit of computation. Such networks are highly parallel and their performance increases with tighter coupling between logic and memory when a bitonic algorithm is used. This paper presents energy-efficient on-chip network architectures for merging key-value pairs using both word-parallel and bit-serial paradigms. The proposed architectures are capable of merging two rows of high bandwidth memory (HBM)worth of data in a manner that is completely overlapped with the reading from and writing back to such a row. Furthermore, their energy consumption is about an order of magnitude lower when compared to a naive crossbar based design.\",\"PeriodicalId\":169413,\"journal\":{\"name\":\"2018 IEEE International Conference on Rebooting Computing (ICRC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC.2018.8638619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2018.8638619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

逻辑-内存集成有助于缓解冯·诺伊曼瓶颈,这使得一类新的架构能够帮助加速图形分析和对稀疏数据流的操作。它们利用合并网络作为关键的计算单元。这种网络是高度并行的,当使用双元算法时,其性能随着逻辑和内存之间更紧密的耦合而提高。本文提出了一种采用字并行和位串行两种模式合并键值对的高效片上网络结构。所建议的体系结构能够合并两行高带宽内存(HBM)价值的数据,其方式与对这一行的读取和回写完全重叠。此外,它们的能耗比单纯的基于横梁的设计低一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Merge Network for a Non-Von Neumann Accumulate Accelerator in a 3D Chip
Logic-memory integration helps mitigate the von Neumann bottleneck, and this has enabled a new class of architectures that helps accelerate graph analytics and operations on sparse data streams. These utilize merge networks as a key unit of computation. Such networks are highly parallel and their performance increases with tighter coupling between logic and memory when a bitonic algorithm is used. This paper presents energy-efficient on-chip network architectures for merging key-value pairs using both word-parallel and bit-serial paradigms. The proposed architectures are capable of merging two rows of high bandwidth memory (HBM)worth of data in a manner that is completely overlapped with the reading from and writing back to such a row. Furthermore, their energy consumption is about an order of magnitude lower when compared to a naive crossbar based design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信