Anirudh Jain, S. Srikanth, E. Debenedictis, T. Krishna
{"title":"三维芯片中非冯诺依曼累积加速器的合并网络","authors":"Anirudh Jain, S. Srikanth, E. Debenedictis, T. Krishna","doi":"10.1109/ICRC.2018.8638619","DOIUrl":null,"url":null,"abstract":"Logic-memory integration helps mitigate the von Neumann bottleneck, and this has enabled a new class of architectures that helps accelerate graph analytics and operations on sparse data streams. These utilize merge networks as a key unit of computation. Such networks are highly parallel and their performance increases with tighter coupling between logic and memory when a bitonic algorithm is used. This paper presents energy-efficient on-chip network architectures for merging key-value pairs using both word-parallel and bit-serial paradigms. The proposed architectures are capable of merging two rows of high bandwidth memory (HBM)worth of data in a manner that is completely overlapped with the reading from and writing back to such a row. Furthermore, their energy consumption is about an order of magnitude lower when compared to a naive crossbar based design.","PeriodicalId":169413,"journal":{"name":"2018 IEEE International Conference on Rebooting Computing (ICRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Merge Network for a Non-Von Neumann Accumulate Accelerator in a 3D Chip\",\"authors\":\"Anirudh Jain, S. Srikanth, E. Debenedictis, T. Krishna\",\"doi\":\"10.1109/ICRC.2018.8638619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logic-memory integration helps mitigate the von Neumann bottleneck, and this has enabled a new class of architectures that helps accelerate graph analytics and operations on sparse data streams. These utilize merge networks as a key unit of computation. Such networks are highly parallel and their performance increases with tighter coupling between logic and memory when a bitonic algorithm is used. This paper presents energy-efficient on-chip network architectures for merging key-value pairs using both word-parallel and bit-serial paradigms. The proposed architectures are capable of merging two rows of high bandwidth memory (HBM)worth of data in a manner that is completely overlapped with the reading from and writing back to such a row. Furthermore, their energy consumption is about an order of magnitude lower when compared to a naive crossbar based design.\",\"PeriodicalId\":169413,\"journal\":{\"name\":\"2018 IEEE International Conference on Rebooting Computing (ICRC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC.2018.8638619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2018.8638619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Merge Network for a Non-Von Neumann Accumulate Accelerator in a 3D Chip
Logic-memory integration helps mitigate the von Neumann bottleneck, and this has enabled a new class of architectures that helps accelerate graph analytics and operations on sparse data streams. These utilize merge networks as a key unit of computation. Such networks are highly parallel and their performance increases with tighter coupling between logic and memory when a bitonic algorithm is used. This paper presents energy-efficient on-chip network architectures for merging key-value pairs using both word-parallel and bit-serial paradigms. The proposed architectures are capable of merging two rows of high bandwidth memory (HBM)worth of data in a manner that is completely overlapped with the reading from and writing back to such a row. Furthermore, their energy consumption is about an order of magnitude lower when compared to a naive crossbar based design.