可持续计算与模拟:文献综述

Suzanne M. DeLong, A. Tolk
{"title":"可持续计算与模拟:文献综述","authors":"Suzanne M. DeLong, A. Tolk","doi":"10.1109/WSC52266.2021.9715447","DOIUrl":null,"url":null,"abstract":"Smart technologies are everywhere and the creation of a smart world, from smart devices to smart cities is rapidly growing to potentially improve quality of life. Businesses, governments, and individual users of smart technology expect a level of service and access to data that is achieved through data and supercomputing centers. These centers potentially consume vast amounts of power and their continued growth may be unsustainable and contribute to greenhouse gasses. As smart technologies rely heavily on such computational capabilities their sustainability is pivotal for a smart future. This paper explores the literature to: identify the problems; categorize the challenges as well as possible solutions; explore how simulation and machine learning can improve computational sustainability; and consider the need to conduct trade-off analysis to determine when to apply simulation and machine learning benefits. A taxonomy for sustainable computing is presented for future research.","PeriodicalId":369368,"journal":{"name":"2021 Winter Simulation Conference (WSC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable Computing and Simulation: A Literature Survey\",\"authors\":\"Suzanne M. DeLong, A. Tolk\",\"doi\":\"10.1109/WSC52266.2021.9715447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart technologies are everywhere and the creation of a smart world, from smart devices to smart cities is rapidly growing to potentially improve quality of life. Businesses, governments, and individual users of smart technology expect a level of service and access to data that is achieved through data and supercomputing centers. These centers potentially consume vast amounts of power and their continued growth may be unsustainable and contribute to greenhouse gasses. As smart technologies rely heavily on such computational capabilities their sustainability is pivotal for a smart future. This paper explores the literature to: identify the problems; categorize the challenges as well as possible solutions; explore how simulation and machine learning can improve computational sustainability; and consider the need to conduct trade-off analysis to determine when to apply simulation and machine learning benefits. A taxonomy for sustainable computing is presented for future research.\",\"PeriodicalId\":369368,\"journal\":{\"name\":\"2021 Winter Simulation Conference (WSC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC52266.2021.9715447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC52266.2021.9715447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

智能技术无处不在,从智能设备到智能城市,智能世界的创建正在迅速发展,有可能提高生活质量。智能技术的企业、政府和个人用户期望通过数据和超级计算中心实现一定程度的服务和数据访问。这些中心可能会消耗大量的电力,它们的持续增长可能是不可持续的,并会产生温室气体。由于智能技术严重依赖于这种计算能力,它们的可持续性对智能未来至关重要。本文通过对文献的梳理:找出问题所在;对挑战和可能的解决方案进行分类;探索模拟和机器学习如何提高计算可持续性;并考虑进行权衡分析的必要性,以确定何时应用模拟和机器学习的好处。提出了可持续计算的分类,以供今后的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sustainable Computing and Simulation: A Literature Survey
Smart technologies are everywhere and the creation of a smart world, from smart devices to smart cities is rapidly growing to potentially improve quality of life. Businesses, governments, and individual users of smart technology expect a level of service and access to data that is achieved through data and supercomputing centers. These centers potentially consume vast amounts of power and their continued growth may be unsustainable and contribute to greenhouse gasses. As smart technologies rely heavily on such computational capabilities their sustainability is pivotal for a smart future. This paper explores the literature to: identify the problems; categorize the challenges as well as possible solutions; explore how simulation and machine learning can improve computational sustainability; and consider the need to conduct trade-off analysis to determine when to apply simulation and machine learning benefits. A taxonomy for sustainable computing is presented for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信