H. Zhang, Zhenyu Liu, Guanwen Zhang, Jiwu Dai, Xiaocong Lian, W. Zhou, Xiangyang Ji
{"title":"基于块浮点算法的FPGA卷积神经网络加速器","authors":"H. Zhang, Zhenyu Liu, Guanwen Zhang, Jiwu Dai, Xiaocong Lian, W. Zhou, Xiangyang Ji","doi":"10.1109/GlobalSIP45357.2019.8969292","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) have been widely used in computer vision applications and achieved great success. However, large-scale CNN models usually consume a lot of computing and memory resources, which makes it difficult for them to be deployed on embedded devices. An efficient block-floating-point (BFP) arithmetic is proposed in this paper. compared with 32-bit floating-point arithmetic, the memory and off-chip bandwidth requirements during convolution are reduced by 50% and 72.37%, respectively. Due to the adoption of BFP arithmetic, the complex multiplication and addition operations of floating-point numbers can be replaced by the corresponding operations of fixed-point numbers, which is more efficient on hardware. A CNN model can be deployed on our accelerator with no more than 0.14% top-1 accuracy loss, and there is no need for retraining and fine-tuning. By employing a series of ping-pong memory access schemes, 2-dimensional propagate partial multiply-accumulate (PPMAC) processors, and an optimized memory system, we implemented a CNN accelerator on Xilinx VC709 evaluation board. The accelerator achieves a performance of 665.54 GOP/s and a power efficiency of 89.7 GOP/s/W under a 300 MHz working frequency, which outperforms previous FPGA based accelerators significantly.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"254 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Block-Floating-Point Arithmetic Based FPGA Accelerator for Convolutional Neural Networks\",\"authors\":\"H. Zhang, Zhenyu Liu, Guanwen Zhang, Jiwu Dai, Xiaocong Lian, W. Zhou, Xiangyang Ji\",\"doi\":\"10.1109/GlobalSIP45357.2019.8969292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNNs) have been widely used in computer vision applications and achieved great success. However, large-scale CNN models usually consume a lot of computing and memory resources, which makes it difficult for them to be deployed on embedded devices. An efficient block-floating-point (BFP) arithmetic is proposed in this paper. compared with 32-bit floating-point arithmetic, the memory and off-chip bandwidth requirements during convolution are reduced by 50% and 72.37%, respectively. Due to the adoption of BFP arithmetic, the complex multiplication and addition operations of floating-point numbers can be replaced by the corresponding operations of fixed-point numbers, which is more efficient on hardware. A CNN model can be deployed on our accelerator with no more than 0.14% top-1 accuracy loss, and there is no need for retraining and fine-tuning. By employing a series of ping-pong memory access schemes, 2-dimensional propagate partial multiply-accumulate (PPMAC) processors, and an optimized memory system, we implemented a CNN accelerator on Xilinx VC709 evaluation board. The accelerator achieves a performance of 665.54 GOP/s and a power efficiency of 89.7 GOP/s/W under a 300 MHz working frequency, which outperforms previous FPGA based accelerators significantly.\",\"PeriodicalId\":221378,\"journal\":{\"name\":\"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"254 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP45357.2019.8969292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Block-Floating-Point Arithmetic Based FPGA Accelerator for Convolutional Neural Networks
Convolutional neural networks (CNNs) have been widely used in computer vision applications and achieved great success. However, large-scale CNN models usually consume a lot of computing and memory resources, which makes it difficult for them to be deployed on embedded devices. An efficient block-floating-point (BFP) arithmetic is proposed in this paper. compared with 32-bit floating-point arithmetic, the memory and off-chip bandwidth requirements during convolution are reduced by 50% and 72.37%, respectively. Due to the adoption of BFP arithmetic, the complex multiplication and addition operations of floating-point numbers can be replaced by the corresponding operations of fixed-point numbers, which is more efficient on hardware. A CNN model can be deployed on our accelerator with no more than 0.14% top-1 accuracy loss, and there is no need for retraining and fine-tuning. By employing a series of ping-pong memory access schemes, 2-dimensional propagate partial multiply-accumulate (PPMAC) processors, and an optimized memory system, we implemented a CNN accelerator on Xilinx VC709 evaluation board. The accelerator achieves a performance of 665.54 GOP/s and a power efficiency of 89.7 GOP/s/W under a 300 MHz working frequency, which outperforms previous FPGA based accelerators significantly.