基于深度学习方法的DG集成电力系统电能质量干扰辨识

Kanyanach Ritthanont, Natin Janjamraj, P. Apiratikul, K. Bhumkittipich
{"title":"基于深度学习方法的DG集成电力系统电能质量干扰辨识","authors":"Kanyanach Ritthanont, Natin Janjamraj, P. Apiratikul, K. Bhumkittipich","doi":"10.1109/ICPEI55293.2022.9987085","DOIUrl":null,"url":null,"abstract":"Nowadays, power distribution systems are increasingly integrated with different loads, and distributed generators cause power quality (PQ) disturbances. Therefore, the implementation of deep learning is one of the advanced technologies following the trends of energy 4.0 for the classification and identification of power quality disturbances for smart energy monitoring. This paper presents the methodology to identify voltage sag, voltage swell, and voltage interruption according to the IEEE 1159 proposed DG integrated power system. The simulation results showed that the accuracies of proposed identification have better performance than that of the conventional neural network.","PeriodicalId":223538,"journal":{"name":"2022 International Conference on Power, Energy and Innovations (ICPEI)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identification of Power Quality Disturbances in DG Integrated Power System based on Deep Learning Approach\",\"authors\":\"Kanyanach Ritthanont, Natin Janjamraj, P. Apiratikul, K. Bhumkittipich\",\"doi\":\"10.1109/ICPEI55293.2022.9987085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, power distribution systems are increasingly integrated with different loads, and distributed generators cause power quality (PQ) disturbances. Therefore, the implementation of deep learning is one of the advanced technologies following the trends of energy 4.0 for the classification and identification of power quality disturbances for smart energy monitoring. This paper presents the methodology to identify voltage sag, voltage swell, and voltage interruption according to the IEEE 1159 proposed DG integrated power system. The simulation results showed that the accuracies of proposed identification have better performance than that of the conventional neural network.\",\"PeriodicalId\":223538,\"journal\":{\"name\":\"2022 International Conference on Power, Energy and Innovations (ICPEI)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Power, Energy and Innovations (ICPEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPEI55293.2022.9987085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Power, Energy and Innovations (ICPEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEI55293.2022.9987085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前,配电系统越来越多地集成了不同的负载,分布式发电机造成了电能质量(PQ)扰动。因此,实施深度学习是顺应能源4.0趋势的先进技术之一,用于对电能质量干扰进行分类和识别,以实现智能能源监测。本文根据IEEE 1159标准提出了一种识别电压暂降、电压膨胀和电压中断的方法。仿真结果表明,该方法的识别精度优于传统神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Power Quality Disturbances in DG Integrated Power System based on Deep Learning Approach
Nowadays, power distribution systems are increasingly integrated with different loads, and distributed generators cause power quality (PQ) disturbances. Therefore, the implementation of deep learning is one of the advanced technologies following the trends of energy 4.0 for the classification and identification of power quality disturbances for smart energy monitoring. This paper presents the methodology to identify voltage sag, voltage swell, and voltage interruption according to the IEEE 1159 proposed DG integrated power system. The simulation results showed that the accuracies of proposed identification have better performance than that of the conventional neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信