有限域上超曲面上有理点的检测

Swastik Kopparty, S. Yekhanin
{"title":"有限域上超曲面上有理点的检测","authors":"Swastik Kopparty, S. Yekhanin","doi":"10.1109/CCC.2008.36","DOIUrl":null,"url":null,"abstract":"We study the complexity of deciding whether a given homogeneous multivariate polynomial has a non- trivial root over a finite field. Given a homogeneous algebraic circuit C that computes an n- variate polynomial p(x) of degree d over a finite field Fq, we wish to determine if there exists a nonzero xisinFq n with C(x)=0. For constant n there are known algorithms for doing this efficiently. However for linear n, the problem becomes NP hard. In this paper, using interesting algebraic techniques, we show that if d is prime and n>d/2, the problem can be solved over sufficiently large finite fields in randomized polynomial time. We complement this result by showing that relaxing any of these constraints makes the problem intractable again.","PeriodicalId":338061,"journal":{"name":"2008 23rd Annual IEEE Conference on Computational Complexity","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Detecting Rational Points on Hypersurfaces over Finite Fields\",\"authors\":\"Swastik Kopparty, S. Yekhanin\",\"doi\":\"10.1109/CCC.2008.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the complexity of deciding whether a given homogeneous multivariate polynomial has a non- trivial root over a finite field. Given a homogeneous algebraic circuit C that computes an n- variate polynomial p(x) of degree d over a finite field Fq, we wish to determine if there exists a nonzero xisinFq n with C(x)=0. For constant n there are known algorithms for doing this efficiently. However for linear n, the problem becomes NP hard. In this paper, using interesting algebraic techniques, we show that if d is prime and n>d/2, the problem can be solved over sufficiently large finite fields in randomized polynomial time. We complement this result by showing that relaxing any of these constraints makes the problem intractable again.\",\"PeriodicalId\":338061,\"journal\":{\"name\":\"2008 23rd Annual IEEE Conference on Computational Complexity\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 23rd Annual IEEE Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2008.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 23rd Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2008.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

研究了确定给定齐次多元多项式在有限域上是否有非平凡根的复杂性。给定一个齐次代数电路C,它在有限域Fq上计算一个d次的n变量多项式p(x),我们希望确定是否存在一个C(x)=0的非零xisinFq n。对于常数n,有一些已知的算法可以有效地做到这一点。然而对于线性n,问题就变成NP困难了。本文利用有趣的代数技巧,证明了当d为素数且n为0 d/2时,该问题可以在足够大的有限域上用随机多项式时间求解。我们补充了这一结果,表明放松任何这些约束都会使问题再次变得棘手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Rational Points on Hypersurfaces over Finite Fields
We study the complexity of deciding whether a given homogeneous multivariate polynomial has a non- trivial root over a finite field. Given a homogeneous algebraic circuit C that computes an n- variate polynomial p(x) of degree d over a finite field Fq, we wish to determine if there exists a nonzero xisinFq n with C(x)=0. For constant n there are known algorithms for doing this efficiently. However for linear n, the problem becomes NP hard. In this paper, using interesting algebraic techniques, we show that if d is prime and n>d/2, the problem can be solved over sufficiently large finite fields in randomized polynomial time. We complement this result by showing that relaxing any of these constraints makes the problem intractable again.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信