基于输入决策信息的鲁棒盲信道均衡

Lu Xu, Jinshu Chen, Y. Zhan, Jianhua Lu, D. Huang
{"title":"基于输入决策信息的鲁棒盲信道均衡","authors":"Lu Xu, Jinshu Chen, Y. Zhan, Jianhua Lu, D. Huang","doi":"10.1109/WCSP.2013.6677064","DOIUrl":null,"url":null,"abstract":"This paper presents two new blind learning algorithms to achieve robust convergence for linear or nonlinear equalization. Rather than only using the output information contained in equalizer's output signals, the input decision information involved in the input signals is employed to assist the blind learning procedure. Based on this input information, two blind algorithms, Benveniste-Goursat input-output-decision (BG-IOD) and Stop-and-Go input-output-decision (SAG-IOD) are proposed. Extensive simulations show that the proposed algorithms are superior to existing algorithms such as stochastic quadratic distance (SQD) and dual mode constant modulus algorithm (DM-CMA) in terms of preventing local convergence for linear equalization with random initial conditions or nonlinear equalization using neural works.","PeriodicalId":342639,"journal":{"name":"2013 International Conference on Wireless Communications and Signal Processing","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robust blind channel equalization based on input decision information\",\"authors\":\"Lu Xu, Jinshu Chen, Y. Zhan, Jianhua Lu, D. Huang\",\"doi\":\"10.1109/WCSP.2013.6677064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents two new blind learning algorithms to achieve robust convergence for linear or nonlinear equalization. Rather than only using the output information contained in equalizer's output signals, the input decision information involved in the input signals is employed to assist the blind learning procedure. Based on this input information, two blind algorithms, Benveniste-Goursat input-output-decision (BG-IOD) and Stop-and-Go input-output-decision (SAG-IOD) are proposed. Extensive simulations show that the proposed algorithms are superior to existing algorithms such as stochastic quadratic distance (SQD) and dual mode constant modulus algorithm (DM-CMA) in terms of preventing local convergence for linear equalization with random initial conditions or nonlinear equalization using neural works.\",\"PeriodicalId\":342639,\"journal\":{\"name\":\"2013 International Conference on Wireless Communications and Signal Processing\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Wireless Communications and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2013.6677064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Wireless Communications and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2013.6677064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了两种新的盲学习算法来实现线性或非线性均衡的鲁棒收敛。与仅使用均衡器输出信号中包含的输出信息不同,该方法利用了输入信号中包含的输入决策信息来辅助盲学习过程。基于这些输入信息,提出了两种盲算法:benvenist - goursat输入输出决策(BG-IOD)和Stop-and-Go输入输出决策(SAG-IOD)。大量的仿真结果表明,该算法在防止随机初始条件下线性均衡或利用神经网络进行非线性均衡的局部收敛方面优于现有的随机二次距离算法(SQD)和双模常模算法(DM-CMA)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust blind channel equalization based on input decision information
This paper presents two new blind learning algorithms to achieve robust convergence for linear or nonlinear equalization. Rather than only using the output information contained in equalizer's output signals, the input decision information involved in the input signals is employed to assist the blind learning procedure. Based on this input information, two blind algorithms, Benveniste-Goursat input-output-decision (BG-IOD) and Stop-and-Go input-output-decision (SAG-IOD) are proposed. Extensive simulations show that the proposed algorithms are superior to existing algorithms such as stochastic quadratic distance (SQD) and dual mode constant modulus algorithm (DM-CMA) in terms of preventing local convergence for linear equalization with random initial conditions or nonlinear equalization using neural works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信