主体包上的连接

L. Tu
{"title":"主体包上的连接","authors":"L. Tu","doi":"10.1142/9789814667814_0037","DOIUrl":null,"url":null,"abstract":"This chapter discusses connections on a principal bundle. Throughout the chapter, G will be a Lie group with Lie algebra g. One possible definition of a connection on a principal G-bundle P is a C∞ right-invariant horizontal distribution on P. Equivalently, a connection on P can be given by a right-equivariant g-valued 1-form on P that is the identity on vertical vectors. The chapter shows the equivalence of these two definitions of a connection. A connection is one of the most basic notions of differential geometry. It is essentially a way of differentiating sections. From a connection, the notions of curvature and geodesics follow.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connections on a Principal Bundle\",\"authors\":\"L. Tu\",\"doi\":\"10.1142/9789814667814_0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter discusses connections on a principal bundle. Throughout the chapter, G will be a Lie group with Lie algebra g. One possible definition of a connection on a principal G-bundle P is a C∞ right-invariant horizontal distribution on P. Equivalently, a connection on P can be given by a right-equivariant g-valued 1-form on P that is the identity on vertical vectors. The chapter shows the equivalence of these two definitions of a connection. A connection is one of the most basic notions of differential geometry. It is essentially a way of differentiating sections. From a connection, the notions of curvature and geodesics follow.\",\"PeriodicalId\":272846,\"journal\":{\"name\":\"Introductory Lectures on Equivariant Cohomology\",\"volume\":\"256 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introductory Lectures on Equivariant Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789814667814_0037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789814667814_0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章讨论主体束上的连接。在本章中,G将是具有李代数G的李群。主G束P上的连接的一个可能定义是P上的C∞右不变水平分布。等价地,P上的连接可以由P上的一个右等变G值1形式给出,该形式是垂直向量上的恒等。本章展示了连接的这两个定义的等价性。连接是微分几何中最基本的概念之一。它本质上是一种分段的方法。从一个连接,曲率和测地线的概念随之而来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connections on a Principal Bundle
This chapter discusses connections on a principal bundle. Throughout the chapter, G will be a Lie group with Lie algebra g. One possible definition of a connection on a principal G-bundle P is a C∞ right-invariant horizontal distribution on P. Equivalently, a connection on P can be given by a right-equivariant g-valued 1-form on P that is the identity on vertical vectors. The chapter shows the equivalence of these two definitions of a connection. A connection is one of the most basic notions of differential geometry. It is essentially a way of differentiating sections. From a connection, the notions of curvature and geodesics follow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信