面向低质量遥感船舶探测的师生网络

Shitian He, H. Zou, Runlin Li, Xu Cao, Fei Cheng, Juan Wei
{"title":"面向低质量遥感船舶探测的师生网络","authors":"Shitian He, H. Zou, Runlin Li, Xu Cao, Fei Cheng, Juan Wei","doi":"10.1109/CSAIEE54046.2021.9543185","DOIUrl":null,"url":null,"abstract":"Most CNN-based detectors rely on high-quality images, and the detection performance may be damaged as the image quality decreases. To enhance ship detection for low-quality images, we propose a distillation network which utilize a “teacher” detector with high-quality input images to guide the training of the original “student” detector. In this way, the student detector can learn the advantage information from the teacher and thus achieves improved detection performance. We feed images with different sampling ratios to our network, and the experimental results on HRSC2016 dataset validate the effectiveness of our method. Moreover, we apply our method to different backbones, and the experimental results demonstrate the generality of our method.","PeriodicalId":376014,"journal":{"name":"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Teacher-Student Network for Low-quality Remote Sensing Ship Detection\",\"authors\":\"Shitian He, H. Zou, Runlin Li, Xu Cao, Fei Cheng, Juan Wei\",\"doi\":\"10.1109/CSAIEE54046.2021.9543185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most CNN-based detectors rely on high-quality images, and the detection performance may be damaged as the image quality decreases. To enhance ship detection for low-quality images, we propose a distillation network which utilize a “teacher” detector with high-quality input images to guide the training of the original “student” detector. In this way, the student detector can learn the advantage information from the teacher and thus achieves improved detection performance. We feed images with different sampling ratios to our network, and the experimental results on HRSC2016 dataset validate the effectiveness of our method. Moreover, we apply our method to different backbones, and the experimental results demonstrate the generality of our method.\",\"PeriodicalId\":376014,\"journal\":{\"name\":\"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSAIEE54046.2021.9543185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAIEE54046.2021.9543185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数基于cnn的检测器依赖于高质量的图像,随着图像质量的下降,检测性能可能会受到影响。为了增强对低质量图像的船舶检测,我们提出了一种蒸馏网络,该网络利用具有高质量输入图像的“教师”检测器来指导原始“学生”检测器的训练。这样,学生检测器可以从老师那里学习到优势信息,从而提高检测性能。我们将不同采样比例的图像输入到网络中,在HRSC2016数据集上的实验结果验证了我们方法的有效性。并将该方法应用于不同的骨干网,实验结果证明了该方法的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Teacher-Student Network for Low-quality Remote Sensing Ship Detection
Most CNN-based detectors rely on high-quality images, and the detection performance may be damaged as the image quality decreases. To enhance ship detection for low-quality images, we propose a distillation network which utilize a “teacher” detector with high-quality input images to guide the training of the original “student” detector. In this way, the student detector can learn the advantage information from the teacher and thus achieves improved detection performance. We feed images with different sampling ratios to our network, and the experimental results on HRSC2016 dataset validate the effectiveness of our method. Moreover, we apply our method to different backbones, and the experimental results demonstrate the generality of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信