蒸汽公用事业系统混合整数优化的严格建模

Jonathan Currie, David I. Wilson
{"title":"蒸汽公用事业系统混合整数优化的严格建模","authors":"Jonathan Currie, David I. Wilson","doi":"10.1109/ASSCC.2012.6523323","DOIUrl":null,"url":null,"abstract":"Given that industrial utility systems are essentially large energy converters, it is surprising that they are so often forgotten or ignored when optimizing plant performance. Significant operational savings are possible simply by redistributing steam generation and consumption, without adding extra equipment, and with minimal investment. However due to the discrete nature of a utility system where equipment can switched in and out of service, steam flows redistributed, and zero-flow conditions are normal, the optimizing of utility system requires a rigorous model based on thermodynamics and state-of-the-art numerical algorithms. This paper proposes a mixed integer modelling strategy to approximate a rigorous simulator model, combining regressions from literature, industrial experience and process specific knowledge resulting in a model suitable for optimization. Two case studies are presented to demonstrate the efficiency of the modelling design, a hypothetical three header model with cogeneration and a four header refinery utility system. Both systems are optimized using BONMIN in less than a quarter of a second on a standard desktop PC and result in substantial economic improvements.","PeriodicalId":341348,"journal":{"name":"2012 10th International Power & Energy Conference (IPEC)","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Rigorously modelling steam utility systems for mixed integer optimization\",\"authors\":\"Jonathan Currie, David I. Wilson\",\"doi\":\"10.1109/ASSCC.2012.6523323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given that industrial utility systems are essentially large energy converters, it is surprising that they are so often forgotten or ignored when optimizing plant performance. Significant operational savings are possible simply by redistributing steam generation and consumption, without adding extra equipment, and with minimal investment. However due to the discrete nature of a utility system where equipment can switched in and out of service, steam flows redistributed, and zero-flow conditions are normal, the optimizing of utility system requires a rigorous model based on thermodynamics and state-of-the-art numerical algorithms. This paper proposes a mixed integer modelling strategy to approximate a rigorous simulator model, combining regressions from literature, industrial experience and process specific knowledge resulting in a model suitable for optimization. Two case studies are presented to demonstrate the efficiency of the modelling design, a hypothetical three header model with cogeneration and a four header refinery utility system. Both systems are optimized using BONMIN in less than a quarter of a second on a standard desktop PC and result in substantial economic improvements.\",\"PeriodicalId\":341348,\"journal\":{\"name\":\"2012 10th International Power & Energy Conference (IPEC)\",\"volume\":\"168 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 10th International Power & Energy Conference (IPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2012.6523323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 10th International Power & Energy Conference (IPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2012.6523323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

考虑到工业公用事业系统本质上是大型能量转换器,在优化工厂性能时,它们经常被遗忘或忽略,这令人惊讶。只需重新分配蒸汽产生和消耗,无需增加额外设备,投资最少,即可显著节省运营成本。然而,由于公用事业系统的离散性,设备可以切换进入和退出服务,蒸汽流量重新分配,零流条件是正常的,因此公用事业系统的优化需要基于热力学和最先进的数值算法的严格模型。本文提出了一种混合整数建模策略来近似一个严格的模拟器模型,结合文献、工业经验和工艺特定知识的回归,得到一个适合优化的模型。为了证明模型设计的有效性,本文给出了两个实例,一个是假设的热电联产三箱模型,另一个是四箱炼油厂公用事业系统。在标准台式电脑上,这两个系统都使用BONMIN在不到四分之一秒的时间内进行了优化,并带来了实质性的经济改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigorously modelling steam utility systems for mixed integer optimization
Given that industrial utility systems are essentially large energy converters, it is surprising that they are so often forgotten or ignored when optimizing plant performance. Significant operational savings are possible simply by redistributing steam generation and consumption, without adding extra equipment, and with minimal investment. However due to the discrete nature of a utility system where equipment can switched in and out of service, steam flows redistributed, and zero-flow conditions are normal, the optimizing of utility system requires a rigorous model based on thermodynamics and state-of-the-art numerical algorithms. This paper proposes a mixed integer modelling strategy to approximate a rigorous simulator model, combining regressions from literature, industrial experience and process specific knowledge resulting in a model suitable for optimization. Two case studies are presented to demonstrate the efficiency of the modelling design, a hypothetical three header model with cogeneration and a four header refinery utility system. Both systems are optimized using BONMIN in less than a quarter of a second on a standard desktop PC and result in substantial economic improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信