基于卡尔曼滤波的立体图像位置和方向估计

V. Lippiello, B. Siciliano, L. Villani
{"title":"基于卡尔曼滤波的立体图像位置和方向估计","authors":"V. Lippiello, B. Siciliano, L. Villani","doi":"10.1109/CCA.2001.973950","DOIUrl":null,"url":null,"abstract":"The estimation problem of the position and orientation of a moving object from visual measurements is considered. Extended Kalman filtering of a sequence of stereo images is used to recursively compute an implicit solution to the projection equations. The proposed approach is general and can be applied to whatever number of cameras are fixed in the workspace. Computer simulations are presented to demonstrate the effectiveness of the algorithm in the presence of noise and to test the robustness of the estimate when some feature points are dynamically lost. Different types of geometric distortion as well as quantization and calibration errors are considered.","PeriodicalId":365390,"journal":{"name":"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Position and orientation estimation based on Kalman filtering of stereo images\",\"authors\":\"V. Lippiello, B. Siciliano, L. Villani\",\"doi\":\"10.1109/CCA.2001.973950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The estimation problem of the position and orientation of a moving object from visual measurements is considered. Extended Kalman filtering of a sequence of stereo images is used to recursively compute an implicit solution to the projection equations. The proposed approach is general and can be applied to whatever number of cameras are fixed in the workspace. Computer simulations are presented to demonstrate the effectiveness of the algorithm in the presence of noise and to test the robustness of the estimate when some feature points are dynamically lost. Different types of geometric distortion as well as quantization and calibration errors are considered.\",\"PeriodicalId\":365390,\"journal\":{\"name\":\"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2001.973950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2001.973950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

研究了基于视觉测量的运动目标位置和方向估计问题。对一组立体图像进行扩展卡尔曼滤波,递归计算投影方程的隐式解。所提出的方法是通用的,可以应用于工作空间中固定的任意数量的摄像机。通过计算机仿真验证了该算法在噪声存在下的有效性,以及在特征点动态丢失时的鲁棒性。考虑了不同类型的几何畸变以及量化和校准误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Position and orientation estimation based on Kalman filtering of stereo images
The estimation problem of the position and orientation of a moving object from visual measurements is considered. Extended Kalman filtering of a sequence of stereo images is used to recursively compute an implicit solution to the projection equations. The proposed approach is general and can be applied to whatever number of cameras are fixed in the workspace. Computer simulations are presented to demonstrate the effectiveness of the algorithm in the presence of noise and to test the robustness of the estimate when some feature points are dynamically lost. Different types of geometric distortion as well as quantization and calibration errors are considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信