求解冗余开放运动链逆任务的加速降梯度算法

H. Issa, Bence Varga, J. Tar
{"title":"求解冗余开放运动链逆任务的加速降梯度算法","authors":"H. Issa, Bence Varga, J. Tar","doi":"10.1109/SACI51354.2021.9465623","DOIUrl":null,"url":null,"abstract":"The solution of the differential inverse kinematic task of redundant open kinematic chains normally can be formulated as an optimization task under constraints in which the kinematic task means the constraint equations and the solution is made unambiguous by minimizing some cost function. This task only in the case of quadratic cost functions can be solved without numerical iteration. The ambiguity of the possible solutions can be utilized by “adding” certain elements of the null space of the Jacobian to this solution. If the cost function has more complex structure the more general numerical procedure of Lagrange’s Reduced Gradient Algorithm can be applied. Recently it was found that this procedure seriously can be accelerated if the computation of the Lagrange multipliers belonging to the individual constraint equations becomes unnecessary. In this case a single vector must be reduced with the components of another one. In the present paper this method is directly applied for the efficient solution of the inverse kinematic task of redundant robot arms. The method is exemplified in designing a particular kinematic structure for a robot arm for specified use.","PeriodicalId":321907,"journal":{"name":"2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated Reduced Gradient Algorithm for Solving the Inverse Kinematic Task of Redundant Open Kinematic Chains\",\"authors\":\"H. Issa, Bence Varga, J. Tar\",\"doi\":\"10.1109/SACI51354.2021.9465623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solution of the differential inverse kinematic task of redundant open kinematic chains normally can be formulated as an optimization task under constraints in which the kinematic task means the constraint equations and the solution is made unambiguous by minimizing some cost function. This task only in the case of quadratic cost functions can be solved without numerical iteration. The ambiguity of the possible solutions can be utilized by “adding” certain elements of the null space of the Jacobian to this solution. If the cost function has more complex structure the more general numerical procedure of Lagrange’s Reduced Gradient Algorithm can be applied. Recently it was found that this procedure seriously can be accelerated if the computation of the Lagrange multipliers belonging to the individual constraint equations becomes unnecessary. In this case a single vector must be reduced with the components of another one. In the present paper this method is directly applied for the efficient solution of the inverse kinematic task of redundant robot arms. The method is exemplified in designing a particular kinematic structure for a robot arm for specified use.\",\"PeriodicalId\":321907,\"journal\":{\"name\":\"2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI51354.2021.9465623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI51354.2021.9465623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

冗余开放运动链微分逆运动任务的求解通常可表述为约束条件下的优化任务,其中运动任务表示约束方程,并通过最小化某个代价函数使解无二义性。该任务只有在二次代价函数的情况下才能不需要数值迭代求解。通过将雅可比矩阵的零空间的某些元素“添加”到该解中,可以利用可能解的模糊性。如果代价函数的结构比较复杂,可以采用拉格朗日降阶算法的更一般的数值过程。最近发现,如果不需要计算属于单个约束方程的拉格朗日乘子,则可以大大加快这一过程。在这种情况下,一个向量必须用另一个向量的分量进行约简。本文将该方法直接应用于冗余机械臂逆运动任务的有效求解。以某用途机械臂的运动结构设计为例,说明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerated Reduced Gradient Algorithm for Solving the Inverse Kinematic Task of Redundant Open Kinematic Chains
The solution of the differential inverse kinematic task of redundant open kinematic chains normally can be formulated as an optimization task under constraints in which the kinematic task means the constraint equations and the solution is made unambiguous by minimizing some cost function. This task only in the case of quadratic cost functions can be solved without numerical iteration. The ambiguity of the possible solutions can be utilized by “adding” certain elements of the null space of the Jacobian to this solution. If the cost function has more complex structure the more general numerical procedure of Lagrange’s Reduced Gradient Algorithm can be applied. Recently it was found that this procedure seriously can be accelerated if the computation of the Lagrange multipliers belonging to the individual constraint equations becomes unnecessary. In this case a single vector must be reduced with the components of another one. In the present paper this method is directly applied for the efficient solution of the inverse kinematic task of redundant robot arms. The method is exemplified in designing a particular kinematic structure for a robot arm for specified use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信