用于语音增强的迭代扩展卡尔曼粒子滤波

Xin Xu, Nan Zhao, Hang Dong
{"title":"用于语音增强的迭代扩展卡尔曼粒子滤波","authors":"Xin Xu, Nan Zhao, Hang Dong","doi":"10.1109/ICOSP.2008.4697079","DOIUrl":null,"url":null,"abstract":"Particle filters have been proposed as a new form of state-space filtering for speech enhancement applications. A crucial issue in particle filtering is the selection of the importance proposal distribution. In this paper, the iterated extended Kalman filter (IEKF) is used to generate the proposal distribution. The proposal distribution integrates the latest measurements into state transition density, so it can match the posteriori density well. We apply time-varying autoregressive (TVAR) models with stochastically evolving parameters to the problem of speech modeling and enhancement, which is superior to conventional AR models. The experimental results indicate that the new particle filter superiors to the standard particle filter and the other filters such as the extended Kalman particle filter (PF-EKF) in low SNR.","PeriodicalId":445699,"journal":{"name":"2008 9th International Conference on Signal Processing","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The iterated extended kalman particle filter for speech enhancement\",\"authors\":\"Xin Xu, Nan Zhao, Hang Dong\",\"doi\":\"10.1109/ICOSP.2008.4697079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle filters have been proposed as a new form of state-space filtering for speech enhancement applications. A crucial issue in particle filtering is the selection of the importance proposal distribution. In this paper, the iterated extended Kalman filter (IEKF) is used to generate the proposal distribution. The proposal distribution integrates the latest measurements into state transition density, so it can match the posteriori density well. We apply time-varying autoregressive (TVAR) models with stochastically evolving parameters to the problem of speech modeling and enhancement, which is superior to conventional AR models. The experimental results indicate that the new particle filter superiors to the standard particle filter and the other filters such as the extended Kalman particle filter (PF-EKF) in low SNR.\",\"PeriodicalId\":445699,\"journal\":{\"name\":\"2008 9th International Conference on Signal Processing\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 9th International Conference on Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2008.4697079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 9th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2008.4697079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

粒子滤波器作为一种新的状态空间滤波形式被提出用于语音增强应用。粒子滤波中的一个关键问题是重要建议分布的选择。本文采用迭代扩展卡尔曼滤波(IEKF)生成建议分布。建议分布将最新的测量值集成到状态转移密度中,因此可以很好地匹配后验密度。我们将参数随机演化的时变自回归(TVAR)模型应用于语音建模和增强问题,该模型优于传统的AR模型。实验结果表明,该滤波器在低信噪比下优于标准粒子滤波器和扩展卡尔曼粒子滤波器(PF-EKF)等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The iterated extended kalman particle filter for speech enhancement
Particle filters have been proposed as a new form of state-space filtering for speech enhancement applications. A crucial issue in particle filtering is the selection of the importance proposal distribution. In this paper, the iterated extended Kalman filter (IEKF) is used to generate the proposal distribution. The proposal distribution integrates the latest measurements into state transition density, so it can match the posteriori density well. We apply time-varying autoregressive (TVAR) models with stochastically evolving parameters to the problem of speech modeling and enhancement, which is superior to conventional AR models. The experimental results indicate that the new particle filter superiors to the standard particle filter and the other filters such as the extended Kalman particle filter (PF-EKF) in low SNR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信