基于神经网络增强直接逆控制方法的四旋翼悬停智能控制设计

S. Gupta, Tushar Sandhan, S. Samanta, S. Dutta
{"title":"基于神经网络增强直接逆控制方法的四旋翼悬停智能控制设计","authors":"S. Gupta, Tushar Sandhan, S. Samanta, S. Dutta","doi":"10.1109/InCACCT57535.2023.10141700","DOIUrl":null,"url":null,"abstract":"Abstract-The quadrotor’s altitude(height), attitude(roll, pitch, yaw), and position (x-y directions) controller design are challenging research areas because of their non-linear coupled dynamics and under-actuated system architecture. This study proposes a quadrotor control system based on neural networks of the Elman recurrent learning mechanism. To solve the desired trajectory tracking problem for a quadrotor, a direct inverse control strategy utilizing Elman recurrent neural networks (ERNN) is demonstrated and tested through MATLAB simulation. The simulation findings show that the ERNN-based control systen operates with a minimum mean square error when using the reference flight testing dataset. Theerror-based comparativ analysis shows that ERNN-based altitude, attitude, and position controllers outperform the backpropagation neural network, according to our experiments.","PeriodicalId":405272,"journal":{"name":"2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Control Design for Quadrotor Perching Application using Neural-Network Augmented Direct Inversion Control Approach\",\"authors\":\"S. Gupta, Tushar Sandhan, S. Samanta, S. Dutta\",\"doi\":\"10.1109/InCACCT57535.2023.10141700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract-The quadrotor’s altitude(height), attitude(roll, pitch, yaw), and position (x-y directions) controller design are challenging research areas because of their non-linear coupled dynamics and under-actuated system architecture. This study proposes a quadrotor control system based on neural networks of the Elman recurrent learning mechanism. To solve the desired trajectory tracking problem for a quadrotor, a direct inverse control strategy utilizing Elman recurrent neural networks (ERNN) is demonstrated and tested through MATLAB simulation. The simulation findings show that the ERNN-based control systen operates with a minimum mean square error when using the reference flight testing dataset. Theerror-based comparativ analysis shows that ERNN-based altitude, attitude, and position controllers outperform the backpropagation neural network, according to our experiments.\",\"PeriodicalId\":405272,\"journal\":{\"name\":\"2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/InCACCT57535.2023.10141700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InCACCT57535.2023.10141700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要四旋翼飞行器的高度(高度)、姿态(滚转、俯仰、偏航)和位置(x-y方向)控制器设计由于其非线性耦合动力学和欠驱动系统结构而成为具有挑战性的研究领域。提出了一种基于Elman循环学习机制的神经网络四旋翼控制系统。为了解决四旋翼飞行器的理想轨迹跟踪问题,提出了一种利用Elman递归神经网络(ERNN)的直接逆控制策略,并通过MATLAB仿真进行了验证。仿真结果表明,在使用参考飞行测试数据集时,基于ern的控制系统具有最小的均方误差。实验表明,基于误差的比较分析表明,基于nnn的高度、姿态和位置控制器优于反向传播神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Control Design for Quadrotor Perching Application using Neural-Network Augmented Direct Inversion Control Approach
Abstract-The quadrotor’s altitude(height), attitude(roll, pitch, yaw), and position (x-y directions) controller design are challenging research areas because of their non-linear coupled dynamics and under-actuated system architecture. This study proposes a quadrotor control system based on neural networks of the Elman recurrent learning mechanism. To solve the desired trajectory tracking problem for a quadrotor, a direct inverse control strategy utilizing Elman recurrent neural networks (ERNN) is demonstrated and tested through MATLAB simulation. The simulation findings show that the ERNN-based control systen operates with a minimum mean square error when using the reference flight testing dataset. Theerror-based comparativ analysis shows that ERNN-based altitude, attitude, and position controllers outperform the backpropagation neural network, according to our experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信