基于web的科学论文摘要预训练变压器模型(WPT-SPS)

K. Girthana, S. Swamynathan, A. R. Nirupama, S. Sri Akshya, S. Adhithyan
{"title":"基于web的科学论文摘要预训练变压器模型(WPT-SPS)","authors":"K. Girthana, S. Swamynathan, A. R. Nirupama, S. Sri Akshya, S. Adhithyan","doi":"10.1109/AISC56616.2023.10085409","DOIUrl":null,"url":null,"abstract":"The rapid growth of scientific publications becomes challenging for researchers to swiftly learn about breakthroughs in their domains. This challenge is addressed by scientific summarization, which provides summaries of the important contributions of scientific papers. This paper proposes a transfer learning technique for scientific paper summarization to generated abstractive summaries of scientific papers in a particular domain. The proposed model attained improvement of around 12% and 20% than the state-of-the art models such as BART and Longformers.","PeriodicalId":408520,"journal":{"name":"2023 International Conference on Artificial Intelligence and Smart Communication (AISC)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Web-based Pretrained Transformer Model for Scientific Paper Summarization (WPT-SPS)\",\"authors\":\"K. Girthana, S. Swamynathan, A. R. Nirupama, S. Sri Akshya, S. Adhithyan\",\"doi\":\"10.1109/AISC56616.2023.10085409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growth of scientific publications becomes challenging for researchers to swiftly learn about breakthroughs in their domains. This challenge is addressed by scientific summarization, which provides summaries of the important contributions of scientific papers. This paper proposes a transfer learning technique for scientific paper summarization to generated abstractive summaries of scientific papers in a particular domain. The proposed model attained improvement of around 12% and 20% than the state-of-the art models such as BART and Longformers.\",\"PeriodicalId\":408520,\"journal\":{\"name\":\"2023 International Conference on Artificial Intelligence and Smart Communication (AISC)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Artificial Intelligence and Smart Communication (AISC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISC56616.2023.10085409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Artificial Intelligence and Smart Communication (AISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISC56616.2023.10085409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

科学出版物的快速增长对研究人员来说是一个挑战,他们要迅速了解自己领域的突破。这一挑战是通过科学摘要来解决的,它提供了科学论文重要贡献的摘要。提出了一种科学论文摘要的迁移学习技术,用于生成特定领域的科学论文摘要。拟议的模型比BART和longformer等最先进的模型分别改善了约12%和20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Web-based Pretrained Transformer Model for Scientific Paper Summarization (WPT-SPS)
The rapid growth of scientific publications becomes challenging for researchers to swiftly learn about breakthroughs in their domains. This challenge is addressed by scientific summarization, which provides summaries of the important contributions of scientific papers. This paper proposes a transfer learning technique for scientific paper summarization to generated abstractive summaries of scientific papers in a particular domain. The proposed model attained improvement of around 12% and 20% than the state-of-the art models such as BART and Longformers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信