基于全频段GSM指纹的高性能室内定位

Bruce Denby, Y. Oussar, Iness Ahriz, G. Dreyfus
{"title":"基于全频段GSM指纹的高性能室内定位","authors":"Bruce Denby, Y. Oussar, Iness Ahriz, G. Dreyfus","doi":"10.1109/ICCW.2009.5207991","DOIUrl":null,"url":null,"abstract":"GSM trace mobile measurements are used to study indoor handset localization in an urban apartment setting. Nearest-neighbor, Support Vector Machine (SVM), and Gaussian Process classifiers are compared. A linear SVM is found to provide mean room-level classification efficiency near 100%, but only when the full set of GSM carriers is used. To our knowledge, this is the first study to use fingerprints containing all GSM carriers, and the first to suggest that GSM could be useful for very high-performance indoor localization.","PeriodicalId":271067,"journal":{"name":"2009 IEEE International Conference on Communications Workshops","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"High-Performance Indoor Localization with Full-Band GSM Fingerprints\",\"authors\":\"Bruce Denby, Y. Oussar, Iness Ahriz, G. Dreyfus\",\"doi\":\"10.1109/ICCW.2009.5207991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GSM trace mobile measurements are used to study indoor handset localization in an urban apartment setting. Nearest-neighbor, Support Vector Machine (SVM), and Gaussian Process classifiers are compared. A linear SVM is found to provide mean room-level classification efficiency near 100%, but only when the full set of GSM carriers is used. To our knowledge, this is the first study to use fingerprints containing all GSM carriers, and the first to suggest that GSM could be useful for very high-performance indoor localization.\",\"PeriodicalId\":271067,\"journal\":{\"name\":\"2009 IEEE International Conference on Communications Workshops\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Communications Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCW.2009.5207991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Communications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2009.5207991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

GSM跟踪移动测量用于研究在城市公寓设置的室内手机定位。比较了最近邻分类器、支持向量机分类器和高斯过程分类器。发现线性支持向量机提供接近100%的平均房间级分类效率,但仅在使用全套GSM载波时。据我们所知,这是第一个使用包含所有GSM载波的指纹的研究,也是第一个表明GSM可以用于非常高性能的室内定位的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Performance Indoor Localization with Full-Band GSM Fingerprints
GSM trace mobile measurements are used to study indoor handset localization in an urban apartment setting. Nearest-neighbor, Support Vector Machine (SVM), and Gaussian Process classifiers are compared. A linear SVM is found to provide mean room-level classification efficiency near 100%, but only when the full set of GSM carriers is used. To our knowledge, this is the first study to use fingerprints containing all GSM carriers, and the first to suggest that GSM could be useful for very high-performance indoor localization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信