{"title":"骨赘和非骨赘皮质骨的生物力学特性:初步研究","authors":"F. Xavier, S. Saha","doi":"10.1109/SBEC.2016.107","DOIUrl":null,"url":null,"abstract":"Introduction: Several studies have associated the development of spinal osteophytes with disc degeneration. Others have characterized them as adaptive bone remodeling in response to unusual stress/strain. No recent study examined the microstructure and mechanical properties of osteophytes. Materials and methods: Bone tissues were harvested from eight different human cadavers. Beams (length: 24mm, width: 4mm, thickness: 2mm) from lumbar osteophytes, lumbar anterior cortices (non-osteophytic), and femoral diaphyseal cortices were tested for three-point bending and micro-hardness. The specimens were subsequently divided into two parts for material density, ash density, and histological analyses. Results: Hardness values (HV) decreased by 39% from femoral cortical to spinal osteophytic samples. The maximum load to failure for osteophytic and non-osteophytic vertebral beams was 64 and 4 Newtons (N), respectively. Material density ranged from 1.40 to 2.0g/cm3 and 1.18 to 1.70g/cm3 for cortical bone and osteophyte, respectively. Undecalcified histology showed a disorganized structure of the osteophytic osteons as compared with the regular pattern observed in femoral diaphyseal cortical bones. Conclusion: Vertebral osteophytes have higher load carrying capacity than vertebral cortical bone. However, cortical bone presents a more mature and organized microstructure than osteophytes.","PeriodicalId":196856,"journal":{"name":"2016 32nd Southern Biomedical Engineering Conference (SBEC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomechanical Properties of Osteophytes and Non-Osteophytic Cortical Bone: A Preliminary Study\",\"authors\":\"F. Xavier, S. Saha\",\"doi\":\"10.1109/SBEC.2016.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Several studies have associated the development of spinal osteophytes with disc degeneration. Others have characterized them as adaptive bone remodeling in response to unusual stress/strain. No recent study examined the microstructure and mechanical properties of osteophytes. Materials and methods: Bone tissues were harvested from eight different human cadavers. Beams (length: 24mm, width: 4mm, thickness: 2mm) from lumbar osteophytes, lumbar anterior cortices (non-osteophytic), and femoral diaphyseal cortices were tested for three-point bending and micro-hardness. The specimens were subsequently divided into two parts for material density, ash density, and histological analyses. Results: Hardness values (HV) decreased by 39% from femoral cortical to spinal osteophytic samples. The maximum load to failure for osteophytic and non-osteophytic vertebral beams was 64 and 4 Newtons (N), respectively. Material density ranged from 1.40 to 2.0g/cm3 and 1.18 to 1.70g/cm3 for cortical bone and osteophyte, respectively. Undecalcified histology showed a disorganized structure of the osteophytic osteons as compared with the regular pattern observed in femoral diaphyseal cortical bones. Conclusion: Vertebral osteophytes have higher load carrying capacity than vertebral cortical bone. However, cortical bone presents a more mature and organized microstructure than osteophytes.\",\"PeriodicalId\":196856,\"journal\":{\"name\":\"2016 32nd Southern Biomedical Engineering Conference (SBEC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 32nd Southern Biomedical Engineering Conference (SBEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBEC.2016.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 32nd Southern Biomedical Engineering Conference (SBEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBEC.2016.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biomechanical Properties of Osteophytes and Non-Osteophytic Cortical Bone: A Preliminary Study
Introduction: Several studies have associated the development of spinal osteophytes with disc degeneration. Others have characterized them as adaptive bone remodeling in response to unusual stress/strain. No recent study examined the microstructure and mechanical properties of osteophytes. Materials and methods: Bone tissues were harvested from eight different human cadavers. Beams (length: 24mm, width: 4mm, thickness: 2mm) from lumbar osteophytes, lumbar anterior cortices (non-osteophytic), and femoral diaphyseal cortices were tested for three-point bending and micro-hardness. The specimens were subsequently divided into two parts for material density, ash density, and histological analyses. Results: Hardness values (HV) decreased by 39% from femoral cortical to spinal osteophytic samples. The maximum load to failure for osteophytic and non-osteophytic vertebral beams was 64 and 4 Newtons (N), respectively. Material density ranged from 1.40 to 2.0g/cm3 and 1.18 to 1.70g/cm3 for cortical bone and osteophyte, respectively. Undecalcified histology showed a disorganized structure of the osteophytic osteons as compared with the regular pattern observed in femoral diaphyseal cortical bones. Conclusion: Vertebral osteophytes have higher load carrying capacity than vertebral cortical bone. However, cortical bone presents a more mature and organized microstructure than osteophytes.