光声显微镜中混响抑制的字典学习方法的比较:特邀报告

Sushanth G. Sathyanarayana, Bo Ning, Song Hu, J. Hossack
{"title":"光声显微镜中混响抑制的字典学习方法的比较:特邀报告","authors":"Sushanth G. Sathyanarayana, Bo Ning, Song Hu, J. Hossack","doi":"10.1109/CISS.2019.8693042","DOIUrl":null,"url":null,"abstract":"Dictionary learning is an unsupervised learning method to abstract image data into a set of learned basis vectors. In prior work, the efficacy of the K-SVD dictionary learning algorithm in suppressing reverberation in volumetric photoacoustic microscopy (PAM) data was demonstrated. In this work, we compare the K-SVD algorithm against the method of optimal directions (MOD). The generalization error and reverberation suppression performance of the two algorithms were compared. The K-SVD was found to have a lower average generalization error (5.69x104 ±9.09x103 (a.u.)) when compared to the MOD (8.27x104 ±1.33x104 (a.u.)) for identical training data, initialization, sparsity (3 atoms per A-line) and number of iterations (5). Both algorithms were observed to suppress the reverberation to a similar extent (18.8 ± 1.12 dB for the K-SVD and 18.3 ± 1.2 dB for the MOD). Our data show that irrespective of the method used, sparse dictionary learning can significantly suppress reverberations in PAM.","PeriodicalId":123696,"journal":{"name":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of dictionary learning methods for reverberation suppression in photoacoustic microscopy : Invited presentation\",\"authors\":\"Sushanth G. Sathyanarayana, Bo Ning, Song Hu, J. Hossack\",\"doi\":\"10.1109/CISS.2019.8693042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dictionary learning is an unsupervised learning method to abstract image data into a set of learned basis vectors. In prior work, the efficacy of the K-SVD dictionary learning algorithm in suppressing reverberation in volumetric photoacoustic microscopy (PAM) data was demonstrated. In this work, we compare the K-SVD algorithm against the method of optimal directions (MOD). The generalization error and reverberation suppression performance of the two algorithms were compared. The K-SVD was found to have a lower average generalization error (5.69x104 ±9.09x103 (a.u.)) when compared to the MOD (8.27x104 ±1.33x104 (a.u.)) for identical training data, initialization, sparsity (3 atoms per A-line) and number of iterations (5). Both algorithms were observed to suppress the reverberation to a similar extent (18.8 ± 1.12 dB for the K-SVD and 18.3 ± 1.2 dB for the MOD). Our data show that irrespective of the method used, sparse dictionary learning can significantly suppress reverberations in PAM.\",\"PeriodicalId\":123696,\"journal\":{\"name\":\"2019 53rd Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2019.8693042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2019.8693042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

字典学习是一种将图像数据抽象为一组学习基向量的无监督学习方法。在之前的工作中,证明了K-SVD字典学习算法在抑制体积光声显微镜(PAM)数据混响方面的有效性。在这项工作中,我们比较了K-SVD算法和最优方向(MOD)方法。比较了两种算法的泛化误差和混响抑制性能。对于相同的训练数据、初始化、稀疏性(每a线3个原子)和迭代次数(5),K-SVD的平均泛化误差(5.69x104±9.09x103 (a.u))低于MOD (8.27x104±1.33x104 (a.u))。两种算法对混响的抑制程度相似(K-SVD为18.8±1.12 dB, MOD为18.3±1.2 dB)。我们的数据表明,无论使用哪种方法,稀疏字典学习都可以显著抑制PAM中的混响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of dictionary learning methods for reverberation suppression in photoacoustic microscopy : Invited presentation
Dictionary learning is an unsupervised learning method to abstract image data into a set of learned basis vectors. In prior work, the efficacy of the K-SVD dictionary learning algorithm in suppressing reverberation in volumetric photoacoustic microscopy (PAM) data was demonstrated. In this work, we compare the K-SVD algorithm against the method of optimal directions (MOD). The generalization error and reverberation suppression performance of the two algorithms were compared. The K-SVD was found to have a lower average generalization error (5.69x104 ±9.09x103 (a.u.)) when compared to the MOD (8.27x104 ±1.33x104 (a.u.)) for identical training data, initialization, sparsity (3 atoms per A-line) and number of iterations (5). Both algorithms were observed to suppress the reverberation to a similar extent (18.8 ± 1.12 dB for the K-SVD and 18.3 ± 1.2 dB for the MOD). Our data show that irrespective of the method used, sparse dictionary learning can significantly suppress reverberations in PAM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信