QT- stnet:一个结合QT段的空间和时间网络,用于心肌梗死的检测和定位

Jie Yu, Jian Gao, Ning Wang, Panpan Feng, Bing Zhou, Zong-Hui Wang
{"title":"QT- stnet:一个结合QT段的空间和时间网络,用于心肌梗死的检测和定位","authors":"Jie Yu, Jian Gao, Ning Wang, Panpan Feng, Bing Zhou, Zong-Hui Wang","doi":"10.1109/CyberC55534.2022.00038","DOIUrl":null,"url":null,"abstract":"Myocardial infarction (MI) is a cardiovascular disease with high mortality, which can be diagnosed by electrocardiogram (ECG). Therefore, this paper proposes a spatial and temporal network combined with QT segment (QT-STNet) to detect and locate MI. First, QT segment is extracted by QT segment extraction module. Next, the QT segment is concatenated with the original signal to enhance the importance of the key information. Then, considering the spatial and temporal features of ECG, DenseNet is used to extract spatial features and Transformer is used to extract temporal features. Finally, the proposed method is test on PTB-XL dataset, and the precision, recall, F1 score and hamming loss are 0.881, 0.881, 0.876 and 0.051 respectively. The results show that the method is superior to other methods.","PeriodicalId":234632,"journal":{"name":"2022 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QT-STNet: A Spatial and Temporal Network Combined with QT Segment for MI Detection and Location\",\"authors\":\"Jie Yu, Jian Gao, Ning Wang, Panpan Feng, Bing Zhou, Zong-Hui Wang\",\"doi\":\"10.1109/CyberC55534.2022.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Myocardial infarction (MI) is a cardiovascular disease with high mortality, which can be diagnosed by electrocardiogram (ECG). Therefore, this paper proposes a spatial and temporal network combined with QT segment (QT-STNet) to detect and locate MI. First, QT segment is extracted by QT segment extraction module. Next, the QT segment is concatenated with the original signal to enhance the importance of the key information. Then, considering the spatial and temporal features of ECG, DenseNet is used to extract spatial features and Transformer is used to extract temporal features. Finally, the proposed method is test on PTB-XL dataset, and the precision, recall, F1 score and hamming loss are 0.881, 0.881, 0.876 and 0.051 respectively. The results show that the method is superior to other methods.\",\"PeriodicalId\":234632,\"journal\":{\"name\":\"2022 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CyberC55534.2022.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberC55534.2022.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心肌梗死(MI)是一种死亡率高的心血管疾病,可通过心电图诊断。为此,本文提出了一种结合QT段的时空网络(QT- stnet)来检测和定位MI。首先,通过QT段提取模块提取QT段。接下来,QT段与原始信号连接,以增强关键信息的重要性。然后,结合心电信号的时空特征,采用DenseNet提取空间特征,Transformer提取时间特征;最后,在pdb - xl数据集上对该方法进行了测试,准确率为0.881,召回率为0.881,F1分数为0.876,hamming损失为0.051。结果表明,该方法优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QT-STNet: A Spatial and Temporal Network Combined with QT Segment for MI Detection and Location
Myocardial infarction (MI) is a cardiovascular disease with high mortality, which can be diagnosed by electrocardiogram (ECG). Therefore, this paper proposes a spatial and temporal network combined with QT segment (QT-STNet) to detect and locate MI. First, QT segment is extracted by QT segment extraction module. Next, the QT segment is concatenated with the original signal to enhance the importance of the key information. Then, considering the spatial and temporal features of ECG, DenseNet is used to extract spatial features and Transformer is used to extract temporal features. Finally, the proposed method is test on PTB-XL dataset, and the precision, recall, F1 score and hamming loss are 0.881, 0.881, 0.876 and 0.051 respectively. The results show that the method is superior to other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信