{"title":"动态网络中的鲁棒异常检测","authors":"Jing Wang, I. Paschalidis","doi":"10.1109/MED.2014.6961410","DOIUrl":null,"url":null,"abstract":"We propose two robust methods for anomaly detection in dynamic networks in which the properties of normal traffic evolve dynamically. We formulate the robust anomaly detection problem as a binary composite hypothesis testing problem and propose two methods: a model-free and a model-based one, leveraging techniques from the theory of large deviations. Both methods require a family of Probability Laws (PLs) that represent normal properties of traffic. We devise a two-step procedure to estimate this family of PLs. We compare the performance of our robust methods and their vanilla counterparts, which assume that normal traffic is stationary, on a network with a diurnal normal pattern and a common anomaly related to data exfiltration. Simulation results show that our robust methods perform better than their vanilla counterparts in dynamic networks.","PeriodicalId":127957,"journal":{"name":"22nd Mediterranean Conference on Control and Automation","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust anomaly detection in dynamic networks\",\"authors\":\"Jing Wang, I. Paschalidis\",\"doi\":\"10.1109/MED.2014.6961410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose two robust methods for anomaly detection in dynamic networks in which the properties of normal traffic evolve dynamically. We formulate the robust anomaly detection problem as a binary composite hypothesis testing problem and propose two methods: a model-free and a model-based one, leveraging techniques from the theory of large deviations. Both methods require a family of Probability Laws (PLs) that represent normal properties of traffic. We devise a two-step procedure to estimate this family of PLs. We compare the performance of our robust methods and their vanilla counterparts, which assume that normal traffic is stationary, on a network with a diurnal normal pattern and a common anomaly related to data exfiltration. Simulation results show that our robust methods perform better than their vanilla counterparts in dynamic networks.\",\"PeriodicalId\":127957,\"journal\":{\"name\":\"22nd Mediterranean Conference on Control and Automation\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd Mediterranean Conference on Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2014.6961410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2014.6961410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We propose two robust methods for anomaly detection in dynamic networks in which the properties of normal traffic evolve dynamically. We formulate the robust anomaly detection problem as a binary composite hypothesis testing problem and propose two methods: a model-free and a model-based one, leveraging techniques from the theory of large deviations. Both methods require a family of Probability Laws (PLs) that represent normal properties of traffic. We devise a two-step procedure to estimate this family of PLs. We compare the performance of our robust methods and their vanilla counterparts, which assume that normal traffic is stationary, on a network with a diurnal normal pattern and a common anomaly related to data exfiltration. Simulation results show that our robust methods perform better than their vanilla counterparts in dynamic networks.