基于anfiss - pso的加热炉温度混合优化设计

Machrus Ali, Hidayatul Nurohmah, Rukslin, Dwi Ajiatmo, M Agil Haikal
{"title":"基于anfiss - pso的加热炉温度混合优化设计","authors":"Machrus Ali, Hidayatul Nurohmah, Rukslin, Dwi Ajiatmo, M Agil Haikal","doi":"10.46962/forteijeeri.v1i2.21","DOIUrl":null,"url":null,"abstract":"-- Intelligent control design for industrial heating furnace temperature control is indispensable. PID, Fuzzy, and ANFIS controllers have been proven reliable and have been widely used. However, it is constrained in choosing a better gain controller. Then an approach method is given to determine the most appropriate controller gain value using the artificial intelligence tuning method. The artificial intelligence method used is a combination of the Adaptive Neuro Fuzzy Inference System and Particle Swarm Optimization (ANFIS-PSO) methods. As a comparison, several methods were used, namely; Conventional PID (PID-Konv), Matlab Auto tuning PID (PID-Auto), PSO tuned PID (PID-PSO), and Hybrid ANFIS-PSO. The ANFIS-PSO controller is the best choice compared to conventional single loop control systems, conventional PID, and matlab 2013a auto tuning methods to control this nonlinear process. The simulation results show that the ANFIS-PSO design is the best method with overshot = 0.0722, undershot 0.0085, and settling time at 18.8789 seconds which can produce a fast response with strong dynamic performance.","PeriodicalId":175469,"journal":{"name":"Journal FORTEI-JEERI","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid Design Optimization of Heating Furnace Temperature using ANFIS-PSO\",\"authors\":\"Machrus Ali, Hidayatul Nurohmah, Rukslin, Dwi Ajiatmo, M Agil Haikal\",\"doi\":\"10.46962/forteijeeri.v1i2.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"-- Intelligent control design for industrial heating furnace temperature control is indispensable. PID, Fuzzy, and ANFIS controllers have been proven reliable and have been widely used. However, it is constrained in choosing a better gain controller. Then an approach method is given to determine the most appropriate controller gain value using the artificial intelligence tuning method. The artificial intelligence method used is a combination of the Adaptive Neuro Fuzzy Inference System and Particle Swarm Optimization (ANFIS-PSO) methods. As a comparison, several methods were used, namely; Conventional PID (PID-Konv), Matlab Auto tuning PID (PID-Auto), PSO tuned PID (PID-PSO), and Hybrid ANFIS-PSO. The ANFIS-PSO controller is the best choice compared to conventional single loop control systems, conventional PID, and matlab 2013a auto tuning methods to control this nonlinear process. The simulation results show that the ANFIS-PSO design is the best method with overshot = 0.0722, undershot 0.0085, and settling time at 18.8789 seconds which can produce a fast response with strong dynamic performance.\",\"PeriodicalId\":175469,\"journal\":{\"name\":\"Journal FORTEI-JEERI\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal FORTEI-JEERI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46962/forteijeeri.v1i2.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal FORTEI-JEERI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46962/forteijeeri.v1i2.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

——智能控制设计对于工业加热炉的温度控制是必不可少的。PID、Fuzzy和ANFIS控制器已被证明是可靠的,并已被广泛使用。然而,它在选择更好的增益控制器时受到限制。然后给出了一种利用人工智能整定方法确定最合适控制器增益值的逼近方法。所采用的人工智能方法是自适应神经模糊推理系统和粒子群优化(anfiss - pso)方法的结合。作为比较,使用了几种方法,即;传统PID (PID- konv)、Matlab自整定PID (PID-Auto)、PSO整定PID (PID-PSO)和混合anfiss -PSO。与传统的单回路控制系统、传统的PID和matlab 2013a自整定方法相比,anfiss - pso控制器是控制这种非线性过程的最佳选择。仿真结果表明,超调量为0.0722,下调量为0.0085,稳定时间为18.8789 s, anfiss - pso设计是最佳设计方案,能够产生快速且动态性能强的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Design Optimization of Heating Furnace Temperature using ANFIS-PSO
-- Intelligent control design for industrial heating furnace temperature control is indispensable. PID, Fuzzy, and ANFIS controllers have been proven reliable and have been widely used. However, it is constrained in choosing a better gain controller. Then an approach method is given to determine the most appropriate controller gain value using the artificial intelligence tuning method. The artificial intelligence method used is a combination of the Adaptive Neuro Fuzzy Inference System and Particle Swarm Optimization (ANFIS-PSO) methods. As a comparison, several methods were used, namely; Conventional PID (PID-Konv), Matlab Auto tuning PID (PID-Auto), PSO tuned PID (PID-PSO), and Hybrid ANFIS-PSO. The ANFIS-PSO controller is the best choice compared to conventional single loop control systems, conventional PID, and matlab 2013a auto tuning methods to control this nonlinear process. The simulation results show that the ANFIS-PSO design is the best method with overshot = 0.0722, undershot 0.0085, and settling time at 18.8789 seconds which can produce a fast response with strong dynamic performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信