盲信道识别和信号恢复,通过限制一个分量的观测到一个最小体积的凸壳

S. Cruces
{"title":"盲信道识别和信号恢复,通过限制一个分量的观测到一个最小体积的凸壳","authors":"S. Cruces","doi":"10.1109/SAM.2008.4606922","DOIUrl":null,"url":null,"abstract":"This paper addresses the problems of the blind channel identification and signal extraction in a linear mixture of bounded complex sources. We present a blind criterion that solves these two related problems by confining a linear component of the observations into a convex-hull of minimum volume. The proposed criterion has its minima only at identification of the subspace of one of the unmixed components of the observations, allowing, therefore, a robust channel identification and signal recovery.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Blind channel identification and signal recovery by confining a component of the observations into a convex-hull of minimum volume\",\"authors\":\"S. Cruces\",\"doi\":\"10.1109/SAM.2008.4606922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problems of the blind channel identification and signal extraction in a linear mixture of bounded complex sources. We present a blind criterion that solves these two related problems by confining a linear component of the observations into a convex-hull of minimum volume. The proposed criterion has its minima only at identification of the subspace of one of the unmixed components of the observations, allowing, therefore, a robust channel identification and signal recovery.\",\"PeriodicalId\":422747,\"journal\":{\"name\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2008.4606922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了有界复杂信号源线性混合条件下的盲信道识别和信号提取问题。我们提出了一个盲准则,通过将观测的线性分量限制在最小体积的凸壳中来解决这两个相关问题。所提出的准则只有在识别观测的一个非混合分量的子空间时才具有最小值,因此,允许进行鲁棒的信道识别和信号恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind channel identification and signal recovery by confining a component of the observations into a convex-hull of minimum volume
This paper addresses the problems of the blind channel identification and signal extraction in a linear mixture of bounded complex sources. We present a blind criterion that solves these two related problems by confining a linear component of the observations into a convex-hull of minimum volume. The proposed criterion has its minima only at identification of the subspace of one of the unmixed components of the observations, allowing, therefore, a robust channel identification and signal recovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信