{"title":"用随机算法求解数值问题","authors":"R. Alt, J. Lamotte, S. Markov","doi":"10.1109/SCAN.2006.35","DOIUrl":null,"url":null,"abstract":"We investigate some algebraic properties of the system of stochastic numbers with the arithmetic operations addition and multiplication by scalars and the relation inclusion and point out certain practically important consequences from these properties. Our idea is to start from a minimal set of empirically known properties and to study these properties by an axiomatic approach. Based on this approach we develop an algebraic theory of stochastic numbers. A numerical example based on the Lagrange polynomial demonstrates the consistency between the CESTAC method and the presented theory of stochastic numbers.","PeriodicalId":388600,"journal":{"name":"12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the solution to numerical problems using stochastic arithmetic\",\"authors\":\"R. Alt, J. Lamotte, S. Markov\",\"doi\":\"10.1109/SCAN.2006.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate some algebraic properties of the system of stochastic numbers with the arithmetic operations addition and multiplication by scalars and the relation inclusion and point out certain practically important consequences from these properties. Our idea is to start from a minimal set of empirically known properties and to study these properties by an axiomatic approach. Based on this approach we develop an algebraic theory of stochastic numbers. A numerical example based on the Lagrange polynomial demonstrates the consistency between the CESTAC method and the presented theory of stochastic numbers.\",\"PeriodicalId\":388600,\"journal\":{\"name\":\"12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCAN.2006.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCAN.2006.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the solution to numerical problems using stochastic arithmetic
We investigate some algebraic properties of the system of stochastic numbers with the arithmetic operations addition and multiplication by scalars and the relation inclusion and point out certain practically important consequences from these properties. Our idea is to start from a minimal set of empirically known properties and to study these properties by an axiomatic approach. Based on this approach we develop an algebraic theory of stochastic numbers. A numerical example based on the Lagrange polynomial demonstrates the consistency between the CESTAC method and the presented theory of stochastic numbers.