{"title":"黄土土的应变-应力特性及其ABAQUS数值模拟研究","authors":"Ali Al-abdullah, Najla Al-hassan, Mohammad Eid","doi":"10.54105/ijse.a7573.052122","DOIUrl":null,"url":null,"abstract":"This research aims to conduct a laboratory study to clarify the behavior of creep in Loess soils with the change of moisture content and applied stress. Soil was brought from Joseh area (southwest of Homs city), and its main properties were determined, after that a series of tests (time dependent deformation) were carried out for the Loess soils within the unconfined compression test. The results showed that the change of moisture content and applied stress on sample have a significant effect on the properties of Creeping of Loess soils, and the deformations that occurred are instantaneous deformations at the moment of load application, and creep deformations that begin with the passage of time. Creep deformations can be divided into three stages: primary creep, stable creep, and accelerated creep. The deformations were evaluated using the Singh-Mitchell theory, and the results showed that the Singh-Mitchell theory fits well the description of deformations over time for Loess soils, where the relative error between the largest and smallest value did not exceed 15%.ABAQUS program was used to numerically describe the creep behavior of Loess soils using the Singh-Mitchell theory .The results showed that the Singh-Mitchell theory within the ABAQUS program gave more accurate values than the computational Singh-Mitchell theory, and the reason is that because of the program contains multiple parameters that describe well the properties of elasticity, plasticity and viscosity for any natural body.","PeriodicalId":356159,"journal":{"name":"Indian Journal of Structure Engineering","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of the Strain-Stress Behavior of the loess Soil and Its Numerical Modeling by ABAQUS\",\"authors\":\"Ali Al-abdullah, Najla Al-hassan, Mohammad Eid\",\"doi\":\"10.54105/ijse.a7573.052122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to conduct a laboratory study to clarify the behavior of creep in Loess soils with the change of moisture content and applied stress. Soil was brought from Joseh area (southwest of Homs city), and its main properties were determined, after that a series of tests (time dependent deformation) were carried out for the Loess soils within the unconfined compression test. The results showed that the change of moisture content and applied stress on sample have a significant effect on the properties of Creeping of Loess soils, and the deformations that occurred are instantaneous deformations at the moment of load application, and creep deformations that begin with the passage of time. Creep deformations can be divided into three stages: primary creep, stable creep, and accelerated creep. The deformations were evaluated using the Singh-Mitchell theory, and the results showed that the Singh-Mitchell theory fits well the description of deformations over time for Loess soils, where the relative error between the largest and smallest value did not exceed 15%.ABAQUS program was used to numerically describe the creep behavior of Loess soils using the Singh-Mitchell theory .The results showed that the Singh-Mitchell theory within the ABAQUS program gave more accurate values than the computational Singh-Mitchell theory, and the reason is that because of the program contains multiple parameters that describe well the properties of elasticity, plasticity and viscosity for any natural body.\",\"PeriodicalId\":356159,\"journal\":{\"name\":\"Indian Journal of Structure Engineering\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Structure Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54105/ijse.a7573.052122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Structure Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54105/ijse.a7573.052122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of the Strain-Stress Behavior of the loess Soil and Its Numerical Modeling by ABAQUS
This research aims to conduct a laboratory study to clarify the behavior of creep in Loess soils with the change of moisture content and applied stress. Soil was brought from Joseh area (southwest of Homs city), and its main properties were determined, after that a series of tests (time dependent deformation) were carried out for the Loess soils within the unconfined compression test. The results showed that the change of moisture content and applied stress on sample have a significant effect on the properties of Creeping of Loess soils, and the deformations that occurred are instantaneous deformations at the moment of load application, and creep deformations that begin with the passage of time. Creep deformations can be divided into three stages: primary creep, stable creep, and accelerated creep. The deformations were evaluated using the Singh-Mitchell theory, and the results showed that the Singh-Mitchell theory fits well the description of deformations over time for Loess soils, where the relative error between the largest and smallest value did not exceed 15%.ABAQUS program was used to numerically describe the creep behavior of Loess soils using the Singh-Mitchell theory .The results showed that the Singh-Mitchell theory within the ABAQUS program gave more accurate values than the computational Singh-Mitchell theory, and the reason is that because of the program contains multiple parameters that describe well the properties of elasticity, plasticity and viscosity for any natural body.