使用可穿戴心电图和血氧饱和度检测呼吸障碍

Yuezhou Zhang, Zhicheng Yang, Zhengbo Zhang, Peiyao Li, Desen Cao, Xiaoli Liu, Jiewen Zheng, Qian Yuan, Jianli Pan
{"title":"使用可穿戴心电图和血氧饱和度检测呼吸障碍","authors":"Yuezhou Zhang, Zhicheng Yang, Zhengbo Zhang, Peiyao Li, Desen Cao, Xiaoli Liu, Jiewen Zheng, Qian Yuan, Jianli Pan","doi":"10.1145/3274783.3275159","DOIUrl":null,"url":null,"abstract":"Conventional diagnosis using polysomnography (PSG) on breathing disorder is expensive and uncomfortable to patients. In this paper, we present a low-cost portable and wearable multi-sensor system to non-invasively acquire a subject's vital signs, and leverage various machine learning methods on features extracted from Electrocardiogram (ECG) and Blood oxygen saturation (SpO2) signals to detect breathing disorder events. Our preliminary predication accuracies on 110 clinical patients is 90.0%.","PeriodicalId":156307,"journal":{"name":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Breathing Disorder Detection Using Wearable Electrocardiogram And Oxygen Saturation\",\"authors\":\"Yuezhou Zhang, Zhicheng Yang, Zhengbo Zhang, Peiyao Li, Desen Cao, Xiaoli Liu, Jiewen Zheng, Qian Yuan, Jianli Pan\",\"doi\":\"10.1145/3274783.3275159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional diagnosis using polysomnography (PSG) on breathing disorder is expensive and uncomfortable to patients. In this paper, we present a low-cost portable and wearable multi-sensor system to non-invasively acquire a subject's vital signs, and leverage various machine learning methods on features extracted from Electrocardiogram (ECG) and Blood oxygen saturation (SpO2) signals to detect breathing disorder events. Our preliminary predication accuracies on 110 clinical patients is 90.0%.\",\"PeriodicalId\":156307,\"journal\":{\"name\":\"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3274783.3275159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274783.3275159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

使用多导睡眠图(PSG)对呼吸障碍进行常规诊断既昂贵又不舒服。在本文中,我们提出了一种低成本的便携式可穿戴多传感器系统,用于无创获取受试者的生命体征,并利用各种机器学习方法从心电图(ECG)和血氧饱和度(SpO2)信号中提取特征来检测呼吸障碍事件。我们对110例临床患者的初步预测准确率为90.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breathing Disorder Detection Using Wearable Electrocardiogram And Oxygen Saturation
Conventional diagnosis using polysomnography (PSG) on breathing disorder is expensive and uncomfortable to patients. In this paper, we present a low-cost portable and wearable multi-sensor system to non-invasively acquire a subject's vital signs, and leverage various machine learning methods on features extracted from Electrocardiogram (ECG) and Blood oxygen saturation (SpO2) signals to detect breathing disorder events. Our preliminary predication accuracies on 110 clinical patients is 90.0%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信