三次非线性Schrödinger方程的渐近性

N. Hayashi, Pavel I. Naumkin †
{"title":"三次非线性Schrödinger方程的渐近性","authors":"N. Hayashi, Pavel I. Naumkin †","doi":"10.1080/02781070410001710353","DOIUrl":null,"url":null,"abstract":"We consider the Cauchy problem for the cubic nonlinear Schrödinger equation where We prove the global existence of small solutions , if the initial data u 1 belong to some analytic function space and are sufficiently small. For the coefficients λ j we assume that there exists θ 0 > 0 such that for all and also we suppose that the initial data are such that where ϵ is a small positive constant depending on the size of initial function in a suitable norm. We also find the large time asymptotic formulas for solutions. In the short range region the solution has an additional logarithmic time decay comparing with the corresponding linear case.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"187 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"On the asymptotics for cubic nonlinear Schrödinger equations\",\"authors\":\"N. Hayashi, Pavel I. Naumkin †\",\"doi\":\"10.1080/02781070410001710353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Cauchy problem for the cubic nonlinear Schrödinger equation where We prove the global existence of small solutions , if the initial data u 1 belong to some analytic function space and are sufficiently small. For the coefficients λ j we assume that there exists θ 0 > 0 such that for all and also we suppose that the initial data are such that where ϵ is a small positive constant depending on the size of initial function in a suitable norm. We also find the large time asymptotic formulas for solutions. In the short range region the solution has an additional logarithmic time decay comparing with the corresponding linear case.\",\"PeriodicalId\":272508,\"journal\":{\"name\":\"Complex Variables, Theory and Application: An International Journal\",\"volume\":\"187 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Variables, Theory and Application: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02781070410001710353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070410001710353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文研究了三次非线性Schrödinger方程的柯西问题,证明了初始数据u 1属于某解析函数空间且足够小时小解的整体存在性。对于系数λ j,我们假设存在θ 0 > 0,这样对于所有,我们也假设初始数据是这样的,其中,取决于合适范数中初始函数的大小,λ是一个小的正常数。我们也找到了解的大时间渐近公式。在短范围内,与相应的线性情况相比,解具有额外的对数时间衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the asymptotics for cubic nonlinear Schrödinger equations
We consider the Cauchy problem for the cubic nonlinear Schrödinger equation where We prove the global existence of small solutions , if the initial data u 1 belong to some analytic function space and are sufficiently small. For the coefficients λ j we assume that there exists θ 0 > 0 such that for all and also we suppose that the initial data are such that where ϵ is a small positive constant depending on the size of initial function in a suitable norm. We also find the large time asymptotic formulas for solutions. In the short range region the solution has an additional logarithmic time decay comparing with the corresponding linear case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信