基于DERs的微电网保护综述

Jorge Cisneros-Saldana, Smrutirekha Samal, Hemkesh Singh, M. Begovic, S. Samantaray
{"title":"基于DERs的微电网保护综述","authors":"Jorge Cisneros-Saldana, Smrutirekha Samal, Hemkesh Singh, M. Begovic, S. Samantaray","doi":"10.1109/TPEC54980.2022.9750716","DOIUrl":null,"url":null,"abstract":"Distributed Energy Resources (DER) early uses as a backup generation has been progressing toward permanent Distributed Generation (DG), along with the development and enhancement of new technologies over small-scale generation. Over last few years, increasing penetration of renewables in the distribution networks at consumer level raises concerns on protection, control, stability and reliability. Considering the DG integration and wide variations in operating conditions of the microgrid, relays experience protection issues at fault current level violating important tripping decision rules. This study reviews the impact of DG penetration as integration means on traditional overcurrent (OC) protection schemes, being the most common and widely used relaying scheme in radial distribution networks. This paper reviews the most representative methods with respect to various challenges uncovered by exhaustive studies and validations and reported in the literature. Further, potential adaptive and intelligent schemes are also discussed for enhancing the performance over traditional protection schemes in microgrids.","PeriodicalId":185211,"journal":{"name":"2022 IEEE Texas Power and Energy Conference (TPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microgrid Protection with Penetration of DERs - A Comprehensive Review\",\"authors\":\"Jorge Cisneros-Saldana, Smrutirekha Samal, Hemkesh Singh, M. Begovic, S. Samantaray\",\"doi\":\"10.1109/TPEC54980.2022.9750716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed Energy Resources (DER) early uses as a backup generation has been progressing toward permanent Distributed Generation (DG), along with the development and enhancement of new technologies over small-scale generation. Over last few years, increasing penetration of renewables in the distribution networks at consumer level raises concerns on protection, control, stability and reliability. Considering the DG integration and wide variations in operating conditions of the microgrid, relays experience protection issues at fault current level violating important tripping decision rules. This study reviews the impact of DG penetration as integration means on traditional overcurrent (OC) protection schemes, being the most common and widely used relaying scheme in radial distribution networks. This paper reviews the most representative methods with respect to various challenges uncovered by exhaustive studies and validations and reported in the literature. Further, potential adaptive and intelligent schemes are also discussed for enhancing the performance over traditional protection schemes in microgrids.\",\"PeriodicalId\":185211,\"journal\":{\"name\":\"2022 IEEE Texas Power and Energy Conference (TPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Texas Power and Energy Conference (TPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPEC54980.2022.9750716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC54980.2022.9750716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着新技术的发展和增强,分布式能源(DER)作为备用发电的早期用途已经向永久分布式发电(DG)发展。在过去的几年里,可再生能源在消费者层面的配电网络中越来越多的渗透引起了对保护、控制、稳定性和可靠性的关注。考虑到DG一体化和微电网运行条件的广泛变化,继电保护在故障电流水平上存在违反重要跳闸决策规则的问题。摘要本研究回顾了DG渗透作为集成手段对传统过流保护方案的影响,过流保护方案是径向配电网中最常见和应用最广泛的继电保护方案。本文回顾了最具代表性的方法,涉及详尽的研究和验证所揭示的各种挑战,并在文献中报道。此外,还讨论了潜在的自适应和智能方案,以提高微电网中传统保护方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microgrid Protection with Penetration of DERs - A Comprehensive Review
Distributed Energy Resources (DER) early uses as a backup generation has been progressing toward permanent Distributed Generation (DG), along with the development and enhancement of new technologies over small-scale generation. Over last few years, increasing penetration of renewables in the distribution networks at consumer level raises concerns on protection, control, stability and reliability. Considering the DG integration and wide variations in operating conditions of the microgrid, relays experience protection issues at fault current level violating important tripping decision rules. This study reviews the impact of DG penetration as integration means on traditional overcurrent (OC) protection schemes, being the most common and widely used relaying scheme in radial distribution networks. This paper reviews the most representative methods with respect to various challenges uncovered by exhaustive studies and validations and reported in the literature. Further, potential adaptive and intelligent schemes are also discussed for enhancing the performance over traditional protection schemes in microgrids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信