M. Kiuchi, Ryoma Miyake, S. Yoshida, Shuji Tanaka, Tsuyoshi Takemoto, Y. Yamaguchi, K. Komaki
{"title":"用溅射法生产低钾PZT薄膜","authors":"M. Kiuchi, Ryoma Miyake, S. Yoshida, Shuji Tanaka, Tsuyoshi Takemoto, Y. Yamaguchi, K. Komaki","doi":"10.1109/SENSORS47125.2020.9278888","DOIUrl":null,"url":null,"abstract":"Monocrystalline-like epitaxial PZT films for commercial use are described for piezoelectric MEMS applications. The composition ratios of Zr and Ti in the films are Morphotropic phase boundary (52:48) and Ti rich (42:58). The films with a thickness of 1 μm to 2 μm exhibit typical transverse piezoelectric d31 coefficients of -185 pm/V and -149 pm/V, respectively. Relative dielectric permittivities are 430 and 264. Dielectric losses are 0.015 and 0.020. Both of films of figure-of-merit for MEMS device are more than 50 GPa. These films are commercially available for piezoelectric MEMS device development and production.","PeriodicalId":338240,"journal":{"name":"2020 IEEE Sensors","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commercial Production of Low-k PZT film using Sputtering Method\",\"authors\":\"M. Kiuchi, Ryoma Miyake, S. Yoshida, Shuji Tanaka, Tsuyoshi Takemoto, Y. Yamaguchi, K. Komaki\",\"doi\":\"10.1109/SENSORS47125.2020.9278888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monocrystalline-like epitaxial PZT films for commercial use are described for piezoelectric MEMS applications. The composition ratios of Zr and Ti in the films are Morphotropic phase boundary (52:48) and Ti rich (42:58). The films with a thickness of 1 μm to 2 μm exhibit typical transverse piezoelectric d31 coefficients of -185 pm/V and -149 pm/V, respectively. Relative dielectric permittivities are 430 and 264. Dielectric losses are 0.015 and 0.020. Both of films of figure-of-merit for MEMS device are more than 50 GPa. These films are commercially available for piezoelectric MEMS device development and production.\",\"PeriodicalId\":338240,\"journal\":{\"name\":\"2020 IEEE Sensors\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47125.2020.9278888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47125.2020.9278888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Commercial Production of Low-k PZT film using Sputtering Method
Monocrystalline-like epitaxial PZT films for commercial use are described for piezoelectric MEMS applications. The composition ratios of Zr and Ti in the films are Morphotropic phase boundary (52:48) and Ti rich (42:58). The films with a thickness of 1 μm to 2 μm exhibit typical transverse piezoelectric d31 coefficients of -185 pm/V and -149 pm/V, respectively. Relative dielectric permittivities are 430 and 264. Dielectric losses are 0.015 and 0.020. Both of films of figure-of-merit for MEMS device are more than 50 GPa. These films are commercially available for piezoelectric MEMS device development and production.