一种用于人脸识别的监督非线性局部嵌入

Jian Cheng, Qingshan Liu, Hanqing Lu, Yenwei Chen
{"title":"一种用于人脸识别的监督非线性局部嵌入","authors":"Jian Cheng, Qingshan Liu, Hanqing Lu, Yenwei Chen","doi":"10.1109/ICIP.2004.1418695","DOIUrl":null,"url":null,"abstract":"Many recent works demonstrated that subspace analysis is a good method for face recognition. How to find the subspace is a key issue. In this paper, a supervised nonlinear local embedding (SNLE) method is proposed to construct a subspace for face recognition, in which we combine the idea of nonlinear kernel mapping and preserving local geometric relations of the samples belonging to same class. SNLE can not only gain a perfect approximation of the nonlinear face manifold, but also enhance within-class local information. Moreover, it is also equivalent to solving a generalized eigenvalue problem in mathematics. Our experiments are performed on two benchmarks, and experimental results show that the proposed method has an encouraging performance.","PeriodicalId":184798,"journal":{"name":"2004 International Conference on Image Processing, 2004. ICIP '04.","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A supervised nonlinear local embedding for face recognition\",\"authors\":\"Jian Cheng, Qingshan Liu, Hanqing Lu, Yenwei Chen\",\"doi\":\"10.1109/ICIP.2004.1418695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many recent works demonstrated that subspace analysis is a good method for face recognition. How to find the subspace is a key issue. In this paper, a supervised nonlinear local embedding (SNLE) method is proposed to construct a subspace for face recognition, in which we combine the idea of nonlinear kernel mapping and preserving local geometric relations of the samples belonging to same class. SNLE can not only gain a perfect approximation of the nonlinear face manifold, but also enhance within-class local information. Moreover, it is also equivalent to solving a generalized eigenvalue problem in mathematics. Our experiments are performed on two benchmarks, and experimental results show that the proposed method has an encouraging performance.\",\"PeriodicalId\":184798,\"journal\":{\"name\":\"2004 International Conference on Image Processing, 2004. ICIP '04.\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Conference on Image Processing, 2004. ICIP '04.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2004.1418695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Image Processing, 2004. ICIP '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2004.1418695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

近年来的许多研究表明,子空间分析是一种很好的人脸识别方法。如何找到子空间是一个关键问题。本文结合非线性核映射的思想和保持同类别样本的局部几何关系,提出了一种监督非线性局部嵌入(SNLE)方法来构造人脸识别的子空间。SNLE不仅可以获得非线性面形的完美逼近,而且可以增强类内局部信息。此外,它也等价于求解数学中的广义特征值问题。我们在两个基准上进行了实验,实验结果表明所提出的方法具有令人鼓舞的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A supervised nonlinear local embedding for face recognition
Many recent works demonstrated that subspace analysis is a good method for face recognition. How to find the subspace is a key issue. In this paper, a supervised nonlinear local embedding (SNLE) method is proposed to construct a subspace for face recognition, in which we combine the idea of nonlinear kernel mapping and preserving local geometric relations of the samples belonging to same class. SNLE can not only gain a perfect approximation of the nonlinear face manifold, but also enhance within-class local information. Moreover, it is also equivalent to solving a generalized eigenvalue problem in mathematics. Our experiments are performed on two benchmarks, and experimental results show that the proposed method has an encouraging performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信