使用词汇树的视觉循环关闭实验

Ankita Kumar, J. Tardif, Roy Anati, Kostas Daniilidis
{"title":"使用词汇树的视觉循环关闭实验","authors":"Ankita Kumar, J. Tardif, Roy Anati, Kostas Daniilidis","doi":"10.1109/CVPRW.2008.4563140","DOIUrl":null,"url":null,"abstract":"In this paper we study the problem of visual loop closing for long trajectories in an urban environment. We use GPS positioning only to narrow down the search area and use pre-built vocabulary trees to find the best matching image in this search area. Geometric consistency is then used to prune out the bad matches. We compare several vocabulary trees on a sequence of 6.5 kilometers. We experiment with hierarchical k-means based trees as well as extremely randomized trees and compare results obtained using five different trees. We obtain the best results using extremely randomized trees. After enforcing geometric consistency the matched images look promising for structure from motion applications.","PeriodicalId":102206,"journal":{"name":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Experiments on visual loop closing using vocabulary trees\",\"authors\":\"Ankita Kumar, J. Tardif, Roy Anati, Kostas Daniilidis\",\"doi\":\"10.1109/CVPRW.2008.4563140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the problem of visual loop closing for long trajectories in an urban environment. We use GPS positioning only to narrow down the search area and use pre-built vocabulary trees to find the best matching image in this search area. Geometric consistency is then used to prune out the bad matches. We compare several vocabulary trees on a sequence of 6.5 kilometers. We experiment with hierarchical k-means based trees as well as extremely randomized trees and compare results obtained using five different trees. We obtain the best results using extremely randomized trees. After enforcing geometric consistency the matched images look promising for structure from motion applications.\",\"PeriodicalId\":102206,\"journal\":{\"name\":\"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2008.4563140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2008.4563140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文研究了城市环境中长轨迹的视觉闭环问题。我们只使用GPS定位来缩小搜索区域,并使用预先构建的词汇树来寻找该搜索区域的最佳匹配图像。然后使用几何一致性来剔除不良匹配。我们比较了6.5公里序列上的几个词汇树。我们实验了基于k-均值的分层树和极端随机树,并比较了使用五种不同树获得的结果。我们使用极端随机树获得了最好的结果。在增强几何一致性之后,匹配的图像看起来很有希望从运动应用中得到结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experiments on visual loop closing using vocabulary trees
In this paper we study the problem of visual loop closing for long trajectories in an urban environment. We use GPS positioning only to narrow down the search area and use pre-built vocabulary trees to find the best matching image in this search area. Geometric consistency is then used to prune out the bad matches. We compare several vocabulary trees on a sequence of 6.5 kilometers. We experiment with hierarchical k-means based trees as well as extremely randomized trees and compare results obtained using five different trees. We obtain the best results using extremely randomized trees. After enforcing geometric consistency the matched images look promising for structure from motion applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信