{"title":"协同过滤在高效文档搜索中的应用","authors":"Seikyung Jung, Juntae Kim, Jonathan L. Herlocker","doi":"10.1109/WI.2004.33","DOIUrl":null,"url":null,"abstract":"This paper presents the SERF (System for Electronic Recommendation Filtering) which is a collaborative filtering system that recommends context-sensitive, high-quality information sources for document search. Collaborative filtering systems remove the limitation of traditional content-based search by using individual's ratings to evaluate and recommend information sources. SERF uses collaborative filtering algorithms to predict the relevance and quality of each document with respect to each particular user and their specific information need. In our system, users specify their need in the form of a natural language query, and are provided with recommended documents based on ratings by other users with similar questions. Preliminary experiments show that the collaborative filtering recommendations increase the efficiency of the document search process. We also discuss some key challenges of designing a collaborative filtering system for document search.","PeriodicalId":229107,"journal":{"name":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'04)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Applying Collaborative Filtering for Efficient Document Search\",\"authors\":\"Seikyung Jung, Juntae Kim, Jonathan L. Herlocker\",\"doi\":\"10.1109/WI.2004.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the SERF (System for Electronic Recommendation Filtering) which is a collaborative filtering system that recommends context-sensitive, high-quality information sources for document search. Collaborative filtering systems remove the limitation of traditional content-based search by using individual's ratings to evaluate and recommend information sources. SERF uses collaborative filtering algorithms to predict the relevance and quality of each document with respect to each particular user and their specific information need. In our system, users specify their need in the form of a natural language query, and are provided with recommended documents based on ratings by other users with similar questions. Preliminary experiments show that the collaborative filtering recommendations increase the efficiency of the document search process. We also discuss some key challenges of designing a collaborative filtering system for document search.\",\"PeriodicalId\":229107,\"journal\":{\"name\":\"IEEE/WIC/ACM International Conference on Web Intelligence (WI'04)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/WIC/ACM International Conference on Web Intelligence (WI'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2004.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2004.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applying Collaborative Filtering for Efficient Document Search
This paper presents the SERF (System for Electronic Recommendation Filtering) which is a collaborative filtering system that recommends context-sensitive, high-quality information sources for document search. Collaborative filtering systems remove the limitation of traditional content-based search by using individual's ratings to evaluate and recommend information sources. SERF uses collaborative filtering algorithms to predict the relevance and quality of each document with respect to each particular user and their specific information need. In our system, users specify their need in the form of a natural language query, and are provided with recommended documents based on ratings by other users with similar questions. Preliminary experiments show that the collaborative filtering recommendations increase the efficiency of the document search process. We also discuss some key challenges of designing a collaborative filtering system for document search.