NoaSci:用于对象存储科学应用的数字对象数组库

Steven W. D. Chien, Artur Podobas, Martin Svedin, A. Tkachuk, Salem El Sayed, Pawel Herman, G. Umanesan, Sai B. Narasimhamurthy, S. Markidis
{"title":"NoaSci:用于对象存储科学应用的数字对象数组库","authors":"Steven W. D. Chien, Artur Podobas, Martin Svedin, A. Tkachuk, Salem El Sayed, Pawel Herman, G. Umanesan, Sai B. Narasimhamurthy, S. Markidis","doi":"10.1109/pdp55904.2022.00034","DOIUrl":null,"url":null,"abstract":"The strong consistency and stateful workflow are seen as the major factors for limiting parallel I/O performance because of the need for locking and state management. While the POSIX-based I/O model dominates modern HPC storage infrastructure, emerging object storage technology can potentially improve I/O performance by eliminating these bottlenecks. Despite a wide deployment on the cloud, its adoption in HPC remains low. We argue one reason is the lack of a suitable programming interface for parallel I/O in scientific applications. In this work, we introduce NoaSci, a Numerical Object Array library for scientific applications. NoaSci supports different data formats (e.g. HDF5, binary), and focuses on supporting nodelocal burst buffers and object stores. We demonstrate for the first time how scientific applications can perform parallel I/O on Seagate’s Motr object store through NoaSci. We evaluate NoaSci’s preliminary performance using the iPIC3D space weather application and position against existing I/O methods.","PeriodicalId":210759,"journal":{"name":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NoaSci: A Numerical Object Array Library for I/O of Scientific Applications on Object Storage\",\"authors\":\"Steven W. D. Chien, Artur Podobas, Martin Svedin, A. Tkachuk, Salem El Sayed, Pawel Herman, G. Umanesan, Sai B. Narasimhamurthy, S. Markidis\",\"doi\":\"10.1109/pdp55904.2022.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The strong consistency and stateful workflow are seen as the major factors for limiting parallel I/O performance because of the need for locking and state management. While the POSIX-based I/O model dominates modern HPC storage infrastructure, emerging object storage technology can potentially improve I/O performance by eliminating these bottlenecks. Despite a wide deployment on the cloud, its adoption in HPC remains low. We argue one reason is the lack of a suitable programming interface for parallel I/O in scientific applications. In this work, we introduce NoaSci, a Numerical Object Array library for scientific applications. NoaSci supports different data formats (e.g. HDF5, binary), and focuses on supporting nodelocal burst buffers and object stores. We demonstrate for the first time how scientific applications can perform parallel I/O on Seagate’s Motr object store through NoaSci. We evaluate NoaSci’s preliminary performance using the iPIC3D space weather application and position against existing I/O methods.\",\"PeriodicalId\":210759,\"journal\":{\"name\":\"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/pdp55904.2022.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pdp55904.2022.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于需要锁定和状态管理,强一致性和有状态工作流被视为限制并行I/O性能的主要因素。虽然基于posix的I/O模型在现代HPC存储基础设施中占主导地位,但新兴的对象存储技术可以通过消除这些瓶颈来潜在地提高I/O性能。尽管在云上得到了广泛的部署,但在高性能计算中的应用仍然很低。我们认为其中一个原因是在科学应用中缺乏合适的并行I/O编程接口。在这项工作中,我们介绍了NoaSci,一个用于科学应用的数值对象数组库。NoaSci支持不同的数据格式(例如HDF5,二进制),并专注于支持节点本地突发缓冲区和对象存储。我们首次演示了科学应用程序如何通过NoaSci在希捷的mother对象存储上执行并行I/O。我们使用iPIC3D空间天气应用程序和位置对现有的I/O方法评估NoaSci的初步性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NoaSci: A Numerical Object Array Library for I/O of Scientific Applications on Object Storage
The strong consistency and stateful workflow are seen as the major factors for limiting parallel I/O performance because of the need for locking and state management. While the POSIX-based I/O model dominates modern HPC storage infrastructure, emerging object storage technology can potentially improve I/O performance by eliminating these bottlenecks. Despite a wide deployment on the cloud, its adoption in HPC remains low. We argue one reason is the lack of a suitable programming interface for parallel I/O in scientific applications. In this work, we introduce NoaSci, a Numerical Object Array library for scientific applications. NoaSci supports different data formats (e.g. HDF5, binary), and focuses on supporting nodelocal burst buffers and object stores. We demonstrate for the first time how scientific applications can perform parallel I/O on Seagate’s Motr object store through NoaSci. We evaluate NoaSci’s preliminary performance using the iPIC3D space weather application and position against existing I/O methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信