情感分析领域中深度学习方法的比较分析

C. Lal, Z. Nasir
{"title":"情感分析领域中深度学习方法的比较分析","authors":"C. Lal, Z. Nasir","doi":"10.1109/IMCERT57083.2023.10075107","DOIUrl":null,"url":null,"abstract":"Recent advances in deep learning have suggested number of methods which can be employed in several domains. Text classification is one of the most common natural language processing tasks and have given relevant results at the level of text classification to perform sentiment analysis. This paper compares the efficacy of different algorithms used to perform sentiment analysis. The comparison offers a global vision to contribute to a relevant system that can evaluate the different types of sentiment analysis by a Corpus (restaurant reviews). In our study we have used word embedding techniques to compare the efficacy of the simple RNN., LSTM., and BERT neural networks in the context of sentiment analysis. This research indicates that the use of BERT and LSTM yields the better outcomes., although BERT requires a longer training period.","PeriodicalId":201596,"journal":{"name":"2023 International Multi-disciplinary Conference in Emerging Research Trends (IMCERT)","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Deep Learning Methods in the Realm of Sentiment Analysis\",\"authors\":\"C. Lal, Z. Nasir\",\"doi\":\"10.1109/IMCERT57083.2023.10075107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in deep learning have suggested number of methods which can be employed in several domains. Text classification is one of the most common natural language processing tasks and have given relevant results at the level of text classification to perform sentiment analysis. This paper compares the efficacy of different algorithms used to perform sentiment analysis. The comparison offers a global vision to contribute to a relevant system that can evaluate the different types of sentiment analysis by a Corpus (restaurant reviews). In our study we have used word embedding techniques to compare the efficacy of the simple RNN., LSTM., and BERT neural networks in the context of sentiment analysis. This research indicates that the use of BERT and LSTM yields the better outcomes., although BERT requires a longer training period.\",\"PeriodicalId\":201596,\"journal\":{\"name\":\"2023 International Multi-disciplinary Conference in Emerging Research Trends (IMCERT)\",\"volume\":\"206 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Multi-disciplinary Conference in Emerging Research Trends (IMCERT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCERT57083.2023.10075107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Multi-disciplinary Conference in Emerging Research Trends (IMCERT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCERT57083.2023.10075107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习的最新进展提出了许多可以在几个领域使用的方法。文本分类是最常见的自然语言处理任务之一,并在文本分类层面给出了相关的结果来进行情感分析。本文比较了用于执行情感分析的不同算法的有效性。这种比较提供了一个全球视野,可以为相关系统做出贡献,该系统可以通过语料库(餐厅评论)评估不同类型的情感分析。在我们的研究中,我们使用词嵌入技术来比较简单RNN的有效性。, LSTM。,以及BERT神经网络在情绪分析中的应用。本研究表明,BERT和LSTM的使用效果较好。,尽管BERT需要更长的训练时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Analysis of Deep Learning Methods in the Realm of Sentiment Analysis
Recent advances in deep learning have suggested number of methods which can be employed in several domains. Text classification is one of the most common natural language processing tasks and have given relevant results at the level of text classification to perform sentiment analysis. This paper compares the efficacy of different algorithms used to perform sentiment analysis. The comparison offers a global vision to contribute to a relevant system that can evaluate the different types of sentiment analysis by a Corpus (restaurant reviews). In our study we have used word embedding techniques to compare the efficacy of the simple RNN., LSTM., and BERT neural networks in the context of sentiment analysis. This research indicates that the use of BERT and LSTM yields the better outcomes., although BERT requires a longer training period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信