{"title":"一种用于天气预报的深度混合模型","authors":"Aditya Grover, Ashish Kapoor, E. Horvitz","doi":"10.1145/2783258.2783275","DOIUrl":null,"url":null,"abstract":"Weather forecasting is a canonical predictive challenge that has depended primarily on model-based methods. We explore new directions with forecasting weather as a data-intensive challenge that involves inferences across space and time. We study specifically the power of making predictions via a hybrid approach that combines discriminatively trained predictive models with a deep neural network that models the joint statistics of a set of weather-related variables. We show how the base model can be enhanced with spatial interpolation that uses learned long-range spatial dependencies. We also derive an efficient learning and inference procedure that allows for large scale optimization of the model parameters. We evaluate the methods with experiments on real-world meteorological data that highlight the promise of the approach.","PeriodicalId":243428,"journal":{"name":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"226","resultStr":"{\"title\":\"A Deep Hybrid Model for Weather Forecasting\",\"authors\":\"Aditya Grover, Ashish Kapoor, E. Horvitz\",\"doi\":\"10.1145/2783258.2783275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weather forecasting is a canonical predictive challenge that has depended primarily on model-based methods. We explore new directions with forecasting weather as a data-intensive challenge that involves inferences across space and time. We study specifically the power of making predictions via a hybrid approach that combines discriminatively trained predictive models with a deep neural network that models the joint statistics of a set of weather-related variables. We show how the base model can be enhanced with spatial interpolation that uses learned long-range spatial dependencies. We also derive an efficient learning and inference procedure that allows for large scale optimization of the model parameters. We evaluate the methods with experiments on real-world meteorological data that highlight the promise of the approach.\",\"PeriodicalId\":243428,\"journal\":{\"name\":\"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"226\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2783258.2783275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783258.2783275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weather forecasting is a canonical predictive challenge that has depended primarily on model-based methods. We explore new directions with forecasting weather as a data-intensive challenge that involves inferences across space and time. We study specifically the power of making predictions via a hybrid approach that combines discriminatively trained predictive models with a deep neural network that models the joint statistics of a set of weather-related variables. We show how the base model can be enhanced with spatial interpolation that uses learned long-range spatial dependencies. We also derive an efficient learning and inference procedure that allows for large scale optimization of the model parameters. We evaluate the methods with experiments on real-world meteorological data that highlight the promise of the approach.