从过去的用户交互中得出项目特征的相关性

Leonardo Cella, Stefano Cereda, Massimo Quadrana, P. Cremonesi
{"title":"从过去的用户交互中得出项目特征的相关性","authors":"Leonardo Cella, Stefano Cereda, Massimo Quadrana, P. Cremonesi","doi":"10.1145/3079628.3079695","DOIUrl":null,"url":null,"abstract":"Item-based recommender systems suggest products based on the similarities between items computed either from past user preferences (collaborative filtering) or from item content features (content-based filtering). Collaborative filtering has been proven to outperform content-based filtering in a variety of scenarios. However, in item cold-start, collaborative filtering cannot be used directly since past user interactions are not available for the newly added items. Hence, content-based filtering is usually the only viable option left.","PeriodicalId":216017,"journal":{"name":"Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Deriving Item Features Relevance from Past User Interactions\",\"authors\":\"Leonardo Cella, Stefano Cereda, Massimo Quadrana, P. Cremonesi\",\"doi\":\"10.1145/3079628.3079695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Item-based recommender systems suggest products based on the similarities between items computed either from past user preferences (collaborative filtering) or from item content features (content-based filtering). Collaborative filtering has been proven to outperform content-based filtering in a variety of scenarios. However, in item cold-start, collaborative filtering cannot be used directly since past user interactions are not available for the newly added items. Hence, content-based filtering is usually the only viable option left.\",\"PeriodicalId\":216017,\"journal\":{\"name\":\"Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3079628.3079695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3079628.3079695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

基于物品的推荐系统根据物品之间的相似度来推荐产品,这些相似度是根据用户过去的偏好(协同过滤)或物品的内容特征(基于内容的过滤)计算出来的。协作过滤已被证明在各种场景中优于基于内容的过滤。然而,在项目冷启动中,协作过滤不能直接使用,因为过去的用户交互对新添加的项目不可用。因此,基于内容的过滤通常是唯一可行的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deriving Item Features Relevance from Past User Interactions
Item-based recommender systems suggest products based on the similarities between items computed either from past user preferences (collaborative filtering) or from item content features (content-based filtering). Collaborative filtering has been proven to outperform content-based filtering in a variety of scenarios. However, in item cold-start, collaborative filtering cannot be used directly since past user interactions are not available for the newly added items. Hence, content-based filtering is usually the only viable option left.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信